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Preface to the fourth edition

Almost a decade has elapsed since the third edition and during this period
many new ideas and methods have been introduced into room acoustics. I
therefore welcome the opportunity to prepare a new edition of this book
and to include the more important of those developments, while also intro-
ducing new topics which were not dealt with in earlier editions.

In room acoustics, as in many other technical fields, the digital computer
has continued its triumphant progress; nowadays hardly any acoustical
measurements are carried out without using a computer, allowing previ-
ously inconceivable improvements in accuracy and rapidity. Therefore, an
update of the chapter on measuring techniques (Chapter 8) was essential.
Furthermore, the increased availability of computers has opened new ways
for the computation and simulation of sound fields in enclosures. These
have led to better and more reliable methods in the practical design of halls;
indeed, due to its flexibility and low cost, sound field simulation will prob-
ably replace the conventional scale model in the near future. Moreover, by
simulation it can demonstrated what a new theatre or concert hall which is
still on the drawing board will sound like when completed (‘auralisation’).
These developments are described in Chapter 9, which contains a separate
section on auralisation.

Also included in the new edition are sections on sound scattering and
diffuse reflection, on sound reflection from curved walls, on sound absorp-
tion by several special arrangements (freely hanging porous material,
Schroeder diffusers) and on the measurement of diffuse reflections from
walls.

As in the earlier editions, no attempt is made to list all relevant publica-
tions on room acoustics, and references are given only where I have adopted
material from another publication, or to enable the reader to obtain more
detailed information on a particular topic. I apologise for leaving many
important and interesting publications unmentioned.

The preparation of a new edition offered the chance to present some
subjects in a more comprehensive and logical way, to improve numerous
text passages and formulae and to correct errors and mistakes that inevit-
ably crept into the previous editions. I appreciate the suggestions of many



critical readers, who drew my attention to weak or misleading material
in the book. Most text passages, however, have been adopted from the
previous editions without any changes. Therefore I want to express again
my most sincere thanks to Professor Peter Lord of the University of Salford
for his competent and sensitive translation. Finally, I want to thank the
publishers for their cooperation in preparing this new edition.

Heinrich Kuttruff
Aachen

x Preface to the fourth edition



Preface to the first edition

This book is intended to present the fundamentals of room acoustics in a
systematic and comprehensive way so that the information thus provided
may be used for the acoustical design of rooms and as a guide to the
techniques of associated measurement.

These fundamentals are twofold in nature: the generation and propaga-
tion of sound in an enclosure, which are physical processes which can be
described without ambiguity in the language of the physicist and engineer;
and the physiological and psychological factors, of prime importance but
not capable of exact description even within our present state of know-
ledge. It is the interdependence and the equality of importance of both these
aspects of acoustics which are characteristic of room acoustics, whether we
are discussing questions of measuring techniques, acoustical design, or the
installation of a public address system.

In the earlier part of the book ample space is devoted to the objective
description of sound fields in enclosures, but, even at this stage, taking into
account, as far as possible, the limitations imposed by the properties of our
hearing. Equal weight is given to both the wave and geometrical descrip-
tion of sound fields, the former serving to provide a more basic understand-
ing, the latter lending itself to practical application. In both instances, full
use is made of statistical methods; therefore, a separate treatment of what is
generally known as ‘statistical room acoustics’ has been dispensed with.

The treatment of absorption mechanisms is based upon the concept that
a thorough understanding of the various absorbers is indispensable for the
acoustician. However, in designing a room he will not, in all probability,
attempt to calculate the absorptivity of a particular arrangement but in-
stead will rely on collected measurements and data based on experience. It
is for this reason that in the chapter on measuring techniques the methods
of determining absorption are discussed in some detail.

Some difficulties were encountered in attempting to describe the factors
which are important in the perception of sound in rooms, primarily be-
cause of the fragmentary nature of the present state of knowledge, which
seems to consist of results of isolated experiments which are strongly influ-
enced by the conditions under which they were performed.



We have refrained from giving examples of completed rooms to illustrate
how the techniques of room acoustics can be applied. These are already in
print, for example Beranek,1 Bruckmayer,2 and Furrer and Lauber.3 In-
stead, we have chosen to show how one can progress in designing a room
and which parameters need to be considered. Furthermore, because model
investigations have proved helpful these are described in detail.

Finally, there is a whole chapter devoted to the design of loudspeaker
installations in rooms. This is to take account of the fact that nowadays
electroacoustic installations are more than a mere crutch in that they fre-
quently present, even in the most acoustically faultless room, the only means
of transmitting the spoken word in an intelligible way. Actually, the instal-
lations and their performance play a more important role in determining
the acoustical quality of what is heard than certain design details of the
room itself.

The book should be understood in its entirety by readers with a reason-
able mathematical background and some elementary knowledge of wave
propagation. Certain hypotheses may be omitted without detriment by
readers with more limited mathematical training.

The literature on room acoustics is so extensive that the author has made
no attempt to provide an exhaustive list of references. References have only
been given in those cases where the work has been directly mentioned in the
text or in order to satisfy possible demand for more detailed information.

The author is greatly indebted to Professor Peter Lord of the University
of Salford and Mrs Evelyn Robinson of Prestbury, Cheshire, for their pains-
taking translation of the German manuscript, and for their efforts to present
some ideas expressed in my native language into colloquial English. Fur-
thermore, the author wishes to express his appreciation to the publishers
for this carefully prepared edition. Last, but not least, he wishes to thank
his wife most sincerely for her patience in the face of numerous evenings
and weekends which he has devoted to his manuscript.

Heinrich Kuttruff
Aachen

1 Beranek, L.L. (1962). Music, Acoustics and Architecture. John Wiley, New York/
London.

2 Bruckmayer, F. (1962). Schalltechnik im Hochbau. Franz Deuticke, Wien.
3 Furrer, W. & Lauber, A. (1972). Raum und Bauakustik, Lärmabwehr, 3rd edn.

Birkhäuser, Basel.

xii Preface to the first edition



Introduction 1

Introduction

We all know that a concert hall, theatre, lecture room or a church may
have good or poor ‘acoustics’. As far as speech in these rooms is concerned,
it is relatively simple to make some sort of judgement on their quality by
rating the ease with which the spoken word is understood. However, judg-
ing the acoustics of a concert hall or an opera house is generally more
difficult, since it requires considerable experience, the opportunity for com-
parisons and a critical ear. Even so the inexperienced cannot fail to learn
about the acoustical reputation of a certain concert hall should they so
desire, for instance by listening to the comments of others, or by reading
the critical reviews of concerts in the press.

An everyday experience (although most people are not consciously aware
of it) is that living rooms, offices, restaurants and all kinds of rooms for
work can be acoustically satisfactory or unsatisfactory. Even rooms which
are generally considered insignificant or spaces such as staircases, factories,
passenger concourses in railway stations and airports may exhibit different
acoustical properties; they may be especially noisy or exceptionally quiet,
or they may differ in the ease with which announcements over the public
address system can be understood. That is to say, even these spaces have
‘acoustics’ which may be satisfactory or less than satisfactory.

Despite the fact that people are subconsciously aware of the acoustics to
which they are daily subjected, there are only a few who can explain what
they really mean by ‘good or poor acoustics’ and who understand factors
which influence or give rise to certain acoustic properties. Even fewer people
know that the acoustics of a room is governed by principles which are
amenable to scientific treatment. It is frequently thought that the acoustical
design of a room is a matter of chance, and that good acoustics cannot be
designed into a room with the same precision as a nuclear reactor or space
vehicle is designed. This idea is supported by the fact that opinions on the
acoustics of a certain room or hall frequently differ as widely as the opin-
ions on the literary qualities of a new book or on the architectural design of
a new building. Furthermore, it is well known that sensational failures in
this field do occur from time to time. These and similar anomalies add even
more weight to the general belief that the acoustics of a room is beyond the
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scope of calculation or prediction, at least with any reliability, and hence
the study of room acoustics is an art rather than an exact science.

In order to shed more light on the nature of room acoustics, let us first
compare it with a related field: the design and construction of musical instru-
ments. This comparison is not as senseless as it may appear at first sight,
since a concert hall too may be regarded as a large musical instrument, the
shape and material of which determine to a considerable extent what the
listener will hear. Musical instruments – string instruments for instance –
are, as is well known, not designed or built by scientifically trained acousti-
cians but, fortunately, by people who have acquired the necessary experience
through long and systematic practical training. Designing or building mu-
sical instruments is therefore not a technical or scientific discipline but a
sort of craft, or an ‘art’ in the classical meaning of this word.

Nevertheless, there is no doubt that the way in which a musical instru-
ment functions, i.e. the mechanism of sound generation, the determining of
the pitch of the tones generated and their timbre through certain resonances,
as well as their radiation into the surrounding air, are all purely physical
processes and can therefore be understood rationally, at least in principle.
Similarly, there is no mystery in the choice of materials; their mechanical
and acoustical properties can be defined by measurements to any required
degree of accuracy. (How well these properties can be reproduced is an-
other problem.) Thus, there is nothing intangible nor is there any magic in
the construction of a musical instrument: many particular problems which
are still unsolved will be understood in the not too distant future. Then one
will doubtless be in a position to design a musical instrument according to
scientific methods, i.e. not only to predict its timbre but also to give, with
scientific accuracy, details for its construction, all of which are necessary to
obtain prescribed or desired acoustical qualities.

Room acoustics is in a different position from musical instrument acous-
tics in that the end product is usually more costly by orders of magnitude.
Furthermore, rooms are produced in much smaller numbers and have by
no means geometrical shapes which remain unmodified through the centur-
ies. On the contrary, every architect, by the very nature of his profession,
strives to create something which is entirely new and original. The mater-
ials used are also subject to the rapid development of building technology.
Therefore, it is impossible to collect in a purely empirical manner sufficient
know-how from which reliable rules for the acoustical design of rooms or
halls can be distilled. An acoustical consultant is confronted with quite a
new situation with each task, each theatre, concert hall or lecture room to
be designed, and it is of little value simply to transfer the experience of
former cases to the new project if nothing is known about the conditions
under which the transfer may be safely made.

This is in contrast to the making of a musical instrument where the use of
unconventional materials as well as the application of new shapes is either
firmly rejected as an offence against sacred traditions or dismissed as a



Introduction 3

whim. As a consequence, time has been sufficient to develop well estab-
lished empirical rules. And if their application happens to fail in one case or
another, the faulty product is abandoned or withdrawn from service –
which is not true for large rooms in an analogous situation.

For the above reasons, the acoustician has been compelled to study sound
propagation in closed spaces with increasing thoroughness and to develop
the knowledge in this field much further than is the case with musical
instruments, even though the acoustical behaviour of a large hall is consid-
erably more complex and involved. Thus, room acoustics has become a
science during the past century and those who practise it on a purely em-
pirical basis will fail sooner or later, like a bridge builder who waives
calculations and relies on experience or empiricism.

On the other hand, the present level of reliable knowledge in room acous-
tics is not particularly advanced. Many important factors influencing the
acoustical qualities of large rooms are understood only incompletely or
even not at all. As will be explained below in more detail, this is due to the
complexity of sound fields in closed spaces – or, as may be said equally well
– to the large number of ‘degrees of freedom’ which we have to deal with.
Another difficulty is that the acoustical quality of a room ultimately has to
be proved by subjective judgements.

In order to gain more understanding about the sort of questions which
can be answered eventually by scientific room acoustics, let us look over the
procedures for designing the acoustics of a large room. If this room is to be
newly built, some ideas will exist as to its intended use. It will have been
established, for example, whether it is to be used for the showing of ciné
films, for sports events, for concerts or as an open-plan office. One of the
first tasks of the consultant is to translate these ideas concerning the prac-
tical use into the language of objective sound field parameters and to fix
values for them which he thinks will best meet the requirements. During
this step he has to keep in mind the limitations and peculiarities of our
subjective listening abilities. (It does not make sense, for instance, to fix the
duration of sound decay with an accuracy of 1% if no one can subjectively
distinguish such small differences.) Ideally, the next step would be to deter-
mine the shape of the hall, to choose the materials to be used, to plan the
arrangement of the audience, of the orchestra and of other sound sources,
and to do all this in such a way that the sound field configuration will
develop which has previously been found to be the optimum for the intended
purpose. In practice, however, the architect will have worked out already a
preliminary design, certain features of which he considers imperative. In
this case the acoustical consultant has to examine the objective acoustical
properties of the design by calculation, by geometric ray considerations, by
model investigations or even by computer simulation, and he will eventu-
ally have to submit proposals for suitable adjustments. As a general rule
there will have to be some compromise in order to obtain a reasonable
result.
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Frequently the problem is refurbishment of an existing hall, either to
remove architectural, acoustical or other technical defects or to adapt it to
a new purpose which was not intended when the hall was originally planned.
In this case an acoustical diagnosis has to be made first on the basis of appro-
priate measurement. A reliable measuring technique which yields objective
quantities, which are subjectively meaningful at the same time, is an indis-
pensable tool of the acoustician. The subsequent therapeutic step is essen-
tially the same as described above: the acoustical consultant has to propose
measures which would result in the intended objective changes in the sound
field and consequently in the subjective impressions of the listeners.

In any case, the acoustician is faced with a two-fold problem: on the one
hand he has to find and to apply the relations between the structural fea-
tures of a room – such as shape, materials and so on – with the sound field
which will occur in it, and on the other hand he has to take into considera-
tion as far as possible the interrelations between the objective and measur-
able sound field parameters and the specific subjective hearing impressions
effected by them. Whereas the first problem lies completely in the realm of
technical reasoning, it is the latter problem which makes room acoustics
different from many other technical disciplines in that the success or failure
of an acoustical design has finally to be decided by the collective judgement
of all ‘consumers’, i.e. by some sort of average, taken over the comments of
individuals with widely varying intellectual, educational and aesthetic back-
grounds. The measurement of sound field parameters can replace to a cer-
tain extent systematic or sporadic questioning of listeners. But, in the final
analysis, it is the average opinion of listeners which decides whether the
acoustics of a room is favourable or poor. If the majority of the audience
(or that part which is vocal) cannot understand what a speaker is saying, or
thinks that the sound of an orchestra in a certain hall is too dry, too weak
or indistinct, then even though the measured reverberation time is appro-
priate, or the local or directional distribution of sound is uniform, the
listener is always right; the hall does have acoustical deficiencies.

Therefore, acoustical measuring techniques can only be a substitute for
the investigation of public opinion on the acoustical qualities of a room and
it will serve its purpose better the closer the measured sound field para-
meters are related to subjective listening categories.

Not only must the measuring techniques take into account the hearing
response of the listeners but the acoustical theory too will only provide
meaningful information if it takes regard of the consumer’s particular listen-
ing abilities. It should be mentioned at this point that the sound field in a
real room is so complicated that it is not open to exact mathematical treat-
ment. The reason for this is the large number of components which make
up the sound field in a closed space regardless of whether we describe it in
terms of vibrational modes or, if we prefer, in terms of sound rays which
have undergone one or more reflections from boundaries. Each of these
components depends on the sound source, the shape of the room and on
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the materials from which it is made; accordingly, the exact computation of
the sound field is usually quite involved. Supposing this procedure were
possible with reasonable expenditure, the results would be so confusing
that such a treatment would not provide a comprehensive survey and hence
would not be of any practical use. For this reason, approximations and
simplifications are inevitable; the totality of possible sound field data has
to be reduced to averages or average functions which are more tractable
and condensed to provide a clearer picture. This is why we have to resort so
frequently to statistical methods and models in room acoustics, whichever
way we attempt to describe sound fields. The problem is to perform these
reductions and simplifications once again in accordance with the properties
of human hearing, i.e. in such a way that the remaining average parameters
correspond as closely as possible to particular subjective sensations.

From this it follows that essential progress in room acoustics depends to
a large extent on the advances in psychological acoustics. As long as the
physiological and psychological processes which are involved in hearing are
not completely understood, the relevant relations between objective stimuli
and subjective sensations must be investigated empirically – and should be
taken into account when designing the acoustics of a room.

Many interesting relations of this kind have been detected and success-
fully investigated during the past few decades. But other questions which
are no less important for room acoustics are unanswered so far, and much
work remains to be carried out in this field.

It is, of course, the purpose of all efforts in room acoustics to avoid
acoustical deficiencies and mistakes. It should be mentioned, on the other
hand, that it is neither desirable nor possible to create the ‘ideal acoustical
environment’ for concerts and theatres. It is a fact that the enjoyment when
listening to music is a matter not only of the measurable sound waves
hitting the ear but also of the listener’s personal attitude and his individual
taste, and these vary from one person to another. For this reason there will
always be varying shades of opinion concerning the acoustics of even the
most marvellous concert hall. For the same reason, one can easily imagine
a wide variety of concert halls with excellent, but nevertheless different,
acoustics. It is this ‘lack of uniformity’ which is characteristic of the subject
of room acoustics, and which is responsible for many of its difficulties, but
it also accounts for the continuous power of attraction it exerts on many
acousticians.
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1 Some facts on sound waves,
sources and hearing

In principle, any complex sound field can be considered as a superposition
of numerous simple sound waves, e.g. plane waves. This is especially true
of the very involved sound fields which we have to deal with in room
acoustics. So it is useful to describe first the properties of a simple plane or
a spherical sound wave or, more basically, the general features of sound
propagation. We can, however, restrict our attention to sound propagation
in gases, because in room acoustics we are only concerned with air as the
medium.

In this chapter we assume the sound propagation to be free of losses and
ignore the effect of any obstacles such as walls, i.e. we suppose the medium
to be unbounded in all directions. Furthermore, we assume our medium to
be homogeneous and at rest. In this case the velocity of sound is constant
with reference to space and time. For air, its magnitude is

c = (331.4 + 0.6Θ) m/s (1.1)

Θ being the temperature in centigrade.
In large halls, variations of temperature and hence of the sound velocity

with time and position cannot be entirely avoided. Likewise, because of
temperature differences and air conditioning, the air is not completely at
rest, and so our assumptions are not fully realised. But the effects which are
caused by these inhomogeneities are so small that they can be neglected.

1.1 Basic relations, the wave equation

In any sound wave, the particles of the medium undergo vibrations about
their mean positions. Therefore, a wave can be described completely by
indicating the instantaneous displacements of these particles. It is more
customary, however, to consider the velocity of particle displacement as a
basic acoustical quantity rather than the displacement itself.

The vibrations in a sound wave do not take place at all points with the
same phase. We can, in fact, find points in a sound field where the particles
vibrate in opposite phase. This means that in certain regions the particles
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are pushed together or compressed and in other regions they are pulled
apart or rarefied. Therefore, under the influence of a sound wave, variations
of gas density and pressure occur, both of which are functions of time and
position. The difference between the instantaneous pressure and the static
pressure is called the sound pressure.

The changes of gas pressure caused by a sound wave in general occur so
rapidly that heat cannot be exchanged between adjacent volume elements.
Consequently, a sound wave causes adiabatic variations of the temperat-
ure, and so the temperature too can be considered as a quantity character-
ising a sound wave.

The various acoustical quantities are connected by a number of basic
laws which enable us to set up a general differential equation governing
sound propagation. Firstly, conservation of momentum is expressed by the
relation

      
grad   p

t
= −ρ0

∂
∂
v

(1.2)

where p denotes the sound pressure, v the vector particle velocity, t the time
and ρ0 the static value of the gas density.

Furthermore, conservation of mass leads to

      
ρ ρ

0    div v = −
∂
∂t

(1.3)

ρ being the total density including its variable part, ρ = ρ0 + δρ. In these
equations, it is tacitly assumed that the changes of p and ρ are small com-
pared with the static values p0 and ρ0 of these quantities; furthermore, the
absolute value of the particle velocity v should be much smaller than the
sound velocity c.

Under the further supposition that we are dealing with an ideal gas, the
following relations hold between the sound pressure, the density variations
and the temperature changes δΘ:

    

p

p0 0 1 273
    

    
= =

− +
κ δρ

ρ
κ

κ
δΘ

Θ
(1.4)

Here κ is the adiabatic exponent (for air κ = 1.4).
The particle velocity v and the variable part δρ of the density can be

eliminated from eqns (1.2) to (1.4). This yields the differential equation

    
c p

p

t
2

2

2
∆   =

∂
∂

(1.5)
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where

    
c

p2 0

0

  = κ
ρ

(1.5a)

This differential equation governs the propagation of sound waves in any
lossless fluid and is therefore of central importance for almost all acoustical
phenomena. We shall refer to it as the ‘wave equation’. It holds not only for
sound pressure but also for density and temperature variations.

1.2 Plane waves and spherical waves

Now we assume that the acoustical quantities depend only on the time and
on one single direction, which may be chosen as the x-direction of a cartesian
coordinate system. Then eqn (1.5) reads

    
c

p

x

p

t
2

2

2

2

2

∂
∂

∂
∂

  = (1.6)

The general solution of this differential equation is

p(x, t) = F(ct − x) + G(ct + x) (1.7)

where F and G are arbitrary functions, the second derivatives of which
exist. The first term on the right represents a pressure wave travelling in the
positive x-direction with a velocity c, because the value of F remains unal-
tered if a time increase δ t is associated with an increase in the coordinate
δx = cδ t. For the same reason the second term describes a pressure wave
propagated in the negative x-direction. Therefore the constant c is the sound
velocity.

Each term of eqn (1.7) represents a progressive ‘plane wave’: As shown
in Fig. 1.1a, the sound pressure p is constant in any plane perpendicular to
the x-axis. These planes of constant sound pressure are called ‘wavefronts’,
and any line perpendicular to them is a ‘wave normal’.

According to eqn (1.2), the particle velocity has only one non-vanishing
component, which is parallel to the gradient of the sound pressure, to the
x-axis. This means sound waves in fluids are longitudinal waves. The par-
ticle velocity may be obtained from applying eqn (1.2) to eqn (1.7):

    
v v

c
F ct x G ct xx    [ (   )  (   )]= = − − +

1

0ρ
(1.8)

As may be seen from eqns (1.7) and (1.8) the ratio of sound pressure and
particle velocity in a plane wave propagated in the positive direction (G = 0)
is frequency independent:
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Figure 1.1 Simple types of waves: (a) plane wave; (b) spherical wave.

    

p

v
c  = ρ0 (1.9)

This ratio is called the ‘characteristic impedance’ of the medium. For air at
normal conditions its value is

ρ0c = 414 kg m−2 s−1 (1.10)

If the wave is travelling in the negative x-direction, the ratio of sound
pressure and particle velocity is negative.

Of particular importance are harmonic waves in which the time and
space dependence of the acoustical quantities, for instance of the sound
pressure, follows a sine or cosine function. If we set G = 0 and specify F as
a cosine function, we obtain an expression for a plane, progressive har-
monic wave:

p(x, t) = S cos [k(ct − x)] = S cos (ω t − kx) (1.11)

with the arbitrary constants S and k. Here the angular frequency

ω = kc (1.12)

was introduced which is related to the temporal period

    
T   =

2π
ω

(1.13)

of the harmonic vibration represented by eqn (1.11). At the same time this
equation describes a spatial harmonic vibration with the period

    
λ π

  =
2

k
(1.14)

This is the ‘wavelength’ of the harmonic wave. It denotes the distance in the
x-direction where equal values of the sound pressure (or any other field
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quantity) occur. According to eqn (1.12) it is related to the angular fre-
quency by

    
λ π

ω
    = =

2 c c

f
(1.15)

where f = ω /2π = 1/T is the frequency of the vibration. It has the dimension
second−1; its units are hertz (Hz), kilohertz (1 kHz = 103 Hz), megahertz
(1 MHz = 106 Hz) etc. The quantity k = ω /c is the propagation constant or
the wave number of the wave.

A very useful and efficient representation of harmonic oscillations and
waves is obtained by observing that cos x is the real part, and sin x is the
imaginary part of exp(ix) with i = √−1. This is the complex or symbolic
notation of harmonic vibrations and will be employed quite frequently in
what follows. Using the aforementioned relation, eqn. (1.11) can be written
in the form

p(x, t) = Re{S exp [i(ω t − kx)]}

or, omitting the sign Re:

p(x, t) = S exp [i(ω t − kx)] (1.16)

where S = | p(x, t) | is the amplitude of the pressure wave.
The complex notation has several advantages over the real representa-

tion (1.11). Any differentiation or integration with respect to time is equival-
ent to multiplication or division by iω. Furthermore, only the complex
notation allows a clear-cut definition of impedances and admittances (see
Section 2.1). It fails, however, in all cases where vibrational quantities are
to be multiplied or squared. If doubts arise concerning the physical mean-
ing of an expression it is advisable to recall the origin of this notation, i.e.
to take the real part of the expression.

As with any complex quantity the complex sound pressure in a plane
wave may be represented in a rectangular coordinate system with the hori-
zontal and the vertical axis corresponding to the real and the imaginary
part of the impedance, respectively. It is often depicted as an arrow point-
ing from the origin to the point which corresponds to the value of the
impedance (see Fig. 1.2). The length of this arrow corresponds to the mag-
nitude of the complex quantity while the angle it includes with the real axis
is its phase angle or ‘argument’ (abbreviated arg p). In the present case the
phase angle depends on time and on position:

arg p = ω t − kx
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Figure 1.2 Representation of a complex quantity p.

This means, that for a fixed position the arrow rotates around the origin with
an angular velocity ω, which explains the expression ‘angular frequency’.

So far it has been assumed that the wave medium is free of losses. If this
is not the case, the pressure amplitude does not remain constant in the
course of wave propagation but decreases according to an exponential law.
Then eqn (1.16) is modified in the following way:

p(x, t) = S exp (−mx/2) exp [i(ω t − kx)] (1.16a)

We can even use the representation of eqn (1.16) if we conceive the wave
number k as a complex quantity containing the attenuation constant m in
its imaginary part:

    
k

c

m
    = −

ω
i

2
(1.17)

Another simple wave type is the spherical wave in which the surfaces of
constant pressure, i.e. the wave fronts, are concentric spheres (see Fig. 1.1b).
In their common centre we have to imagine some vanishingly small source
which introduces or withdraws fluid. Such a source is called a ‘point source’.
The appropriate coordinates for this geometry are polar coordinates with
the distance r from the centre as the relevant space coordinate. Trans-
formed into this system, the differential equation (1.5) reads:

    

∂
∂

∂
∂

∂
∂

2

2 2

2

2

2 1p

r r

p

r c

p

t
    + = (1.18)

A simple solution of this equation is

    
p r t

r
t

r

c
( , )    = −







ρ
π

0

4
C (1.19)
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It represents a spherical wave produced by a point source at r = 0 with the
‘volume velocity’ Q, which is the rate (in m3/s) at which fluid is expelled by
the source. The overdot means partial differentiation with respect to time.
Again, the argument t − r/c indicates that any disturbance created by the
sound source is propagated outward with velocity c, its strength decreasing
as 1/r. Reversing the sign in the argument of C would result in the unreal-
istic case of an in-going wave.

The only non-vanishing component of the particle velocity is the radial
one; it is calculated by applying eqn (1.2) to eqn (1.19):

      

v
r

Q t
r

c

r

c
t

r

c
r         = −







+ −



















1

4 2π
C (1.20)

If the volume velocity of the source varies according to Q(t) = D exp (iω t),
eqn (1.19) yields a harmonic spherical wave in complex notation

    
p r t

r
t kr( , )  exp [ (   )]= −

i
i

ω ρ
π

ω0

4
D (1.21)

while the particle velocity as obtained form eqn (1.20) is

      
v

p

c kr
r     = +






ρ0

1
1

i
(1.22)

This formula indicates that the ratio of sound pressure and particle velocity
in a spherical sound wave depends on the distance r and the frequency
ω = kc. Furthermore, it is complex, i.e. between both quantities there is a
phase difference. For kr >> 1, i.e. for distances which are large compared
with the wavelength, the ratio p/vr tends asymptotically to ρ0c, the charac-
teristic impedance of the medium.

A plane wave is an idealised wave type which does not exist in the real
world, at least not in its pure form. However, sound waves travelling in a
rigid tube can come very close to a plane wave. Furthermore, a limited
region of a spherical wave may also be considered as a good approximation
to a plane wave provided the distance r from the centre is large compared
with all wavelengths involved, i.e. kr >> 1, see eqn (1.22).

On the other hand, a point source producing a spherical wave can be
approximated by any sound source which is small compared with the wave-
length and which expels fluid, for instance by a small pulsating sphere or a
loudspeaker mounted into one side of an airtight box. Most sound sources,
however, do not behave as point sources. In these cases, the sound pressure
depends not only on the distance r but also on the direction, which can be
characterised by a polar angle ϑ and an azimuth angle ϕ. For distances
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exceeding a characteristic range, which depends on the sort of sound source
and the frequency, the sound pressure is given by

p(r, ϑ, ϕ, t) =
  

A

r
Γ(ϑ, ϕ) exp [i(ωt − kr)] (1.23)

where the ‘directivity function’ Γ(ϑ, ϕ) is normalised so as to make Γ = 1
for its absolute maximum. A is a constant.

1.3 Energy density and intensity, radiation

If a sound source, for instance a musical instrument, is to generate a sound
wave it has to deliver some energy to a fluid. This energy is carried away by
the sound wave. Accordingly we can characterize the amount of energy
contained in one unit volume of the wave by the energy density. As with
any kind of mechanical energy one has to distinguish between potential and
kinetic energy density:

    
w

p

c
pot   ,=

2

0
22ρ       

wkin   
| |

=
ρ0

2

2

v
(1.24)

and the total energy density is

w = wpot + wkin (1.25)

Another important quantity is sound intensity, which is a measure of the
energy transported in a sound wave. Imagine a window of 1 m2 perpen-
dicular to the direction of sound propagation. Then the intensity is the
energy per second passing this window. Generally the intensity is a vector
parallel to the vector v of the particle velocity and is given by

I = pv (1.26)

The general principle of energy conservation requires

      

∂
∂
w

t
     + =div I 0 (1.27)

It should be noted that – in contrast to the sound pressure and particle
velocity – these energetic quantities do not simply add if two waves are
superimposed on each other.

In a plane wave the sound pressure and the longitudinal component of
the particle velocity are related by p = ρ0cv, and the same holds for a spher-
ical wave at a large distance from the centre (kr >> 1, see eqn (1.22)). Hence
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we can express the particle velocity in terms of the sound pressure and the
energy density and the intensity are

    
w

p

c
  =

2

0
2ρ

and
    
I

p

c
  =

2

0ρ
(1.28)

They are related by

I = cw (1.29)

Stationary signals which are not limited in time may be characterised by
time averages over a sufficiently long time. We introduce the root-mean-
square of the sound pressure by

      

p
t

p t
t

rms
a 0

a

d    

/

/
=













= ( )1 2

1 2

1 2� K (1.30)

where the overbar is a shorthand notation indicating time averaging. The
eqns (1.28) yield

    
q  =

p

c
rms
2

0
2ρ

and
    
A   =

p

c
rms
2

0ρ
(1.28a)

Finally, for a harmonic sound wave with the sound pressure amplitude S,
prms equals S/√2, which leads to

    
q

S
  =

2

0
22ρ c

and
    
A

S
  =

2

02ρ c
(1.28b)

The last equation can be used to express the total power output of a point
source P = 4πr2I(r) by its volume velocity. According to eqn (1.21), the
sound pressure amplitude in a spherical wave is ρ0ωD/4πr and therefore

    
P

c
  =

ρ
π

ω0 2 2

8
D (1.31)

If, on the other hand, the power output of a point source is given, the root-
mean-square of the sound pressure at distance r from the source is

      
p

r

cP
rms   =







1

4
0� ρ
π

(1.32)
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1.4 Signals and systems

Any acoustical signal can be unambiguously described by its time function
s(t) where s denotes a sound pressure, a component of particle velocity, or
the instantaneous density of air, for instance. If this function is a sine or
cosine function – or an exponential with imaginary exponent – we speak of
a harmonic signal, which is closely related to the harmonic waves as intro-
duced in Section 1.2. Harmonic signals and waves play a key role in acous-
tics although real sound signals are almost never harmonic but show a
much more complicated time dependence. The reason for this apparent
contradiction is the fact that virtually all signals can be considered as
superposition of harmonic signals. This is the fundamental statement of the
famous Fourier theorem.

The Fourier theorem can be formulated as follows: let s(t) be a real, non-
periodic time function describing, for example, the time dependence of the
sound pressure or the volume velocity, this function being sufficiently steady
(a requirement which is fulfilled in all practical cases), and the integral
∫+

−
∞
∞ [s(t)]2 dt have a finite value. Then

s(t) =
  
�

−∞

+∞

S(f ) exp (2π ift) df (1.33a)

with

S(f ) =
  
�

−∞

+∞

s(t ) exp (−2π ift) dt (1.33b)

Because of the symmetry of these formulae S(f ) is not only the Fourier
transform of s(t) but s(t) is the (inverse) Fourier transform of S(f ) as well.
The complex function S(f ) is called the ‘spectral function’ or the ‘complex
amplitude spectrum’, or simply the ‘spectrum’ of the signal s(t). It can easily
be shown that S(−f ) = S*(f ), where the asterisk denotes the transition to the
complex conjugate function. S(f ) and s(t) are completely equivalent repres-
entations of the same signal.

According to eqn (1.33a), the signal s(t) is composed of harmonic time
functions with continuously varying frequencies f. The absolute value of
the spectral function, which can be written as

S(f ) = | S(f ) | exp [iψ (f )] (1.34)

is the amplitude of the harmonic vibration with frequency f; the argument
ψ(f ) is the phase angle of this particular vibration. The functions | S(f ) | and
ψ (f ) are called the amplitude and the phase spectrum of the signal s(t). An
example of a time function and its amplitude spectrum is shown in Fig. 1.7.
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The Fourier theorem assumes a slightly different form if s(t) is a periodic
function with period T, i.e. if s(t) = s(t + T). Then the integral in eqn (1.33a)
has to be replaced by a series:

    
s t S

nt

T
n

n

( )  exp=





=−∞

+∞

∑ 2π i
(1.35a)

with

      
S

T
s t

nt

T
tn

T

  ( ) exp=
−





1 2�

0

π i
d (1.35b)

If the signal is not continous but consists of a sequence of N discrete,
periodically repeated numbers

. . . , s0, s1, s2, . . . , sN−2, sN−1, s0, s1, . . .

the Fourier coefficients are given by

    
S s

nm

N
m n

n

N

  exp= −





=

−

∑
0

1

2π i (1.35c)

The sequence of these coefficients, which is also periodic with the period N,
is called the Discrete Fourier Transform (DTF) of sn.

The steady spectral function has changed now into discrete ‘Fourier coef-
ficients’, for which S−n = Sn* as before. Hence a periodic signal consists of
discrete harmonic vibrations, the frequencies of which are multiples of a
fundamental frequency 1/T. These components are called ‘partial vibra-
tions’ or ‘harmonics’, the first harmonic being identical with the funda-
mental vibration.

Of course all the formulae above can be written with the angular
frequency ω = 2π f instead of the frequency f. Furthermore, a real notation
is possible. It can be obtained simply by separating the real parts from the
imaginary parts of eqns (1.33) and (1.35) respectively.

Equations (1.33) cannot be applied in this form to stationary non-
periodic signals, i.e. to signals which are not limited in time and the average
properties of which are not time dependent. In this case the integrals would
not converge. Therefore, firstly a ‘window’ of width T0 is cut out of the
signal. For this section the spectral function ST0

(f ) is well defined and can be
evaluated numerically or experimentally. The ‘power spectrum’ of the whole
signal is then given by

    
W f

T
S f S f

T
T T( )  lim ( ) * ( )=











→∞0

0 0

1

0

(1.36)
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The determination of the complex spectrum S(f ) or of the power spectrum
W(f ), known as ‘spectral analysis’ is of great theoretical and practical im-
portance. Nowadays it is most conveniently achieved by using digital com-
puters. A particularly efficient procedure for computing spectral functions
is the ‘fast Fourier transform’ (FFT) algorithm. Since the description of this
method is beyond the scope of this book, the reader is referred to the
extensive literature on this subject (see, for instance, Ref. 1). A rough,
experimental spectral analysis can also be carried out by applying the signal
to a set of bandpass filters.

The power spectrum, which is an even function of the frequency, does
not contain all the information on the original signal s(t), because it is
based on the absolute value of the spectral function only, whereas its phase
has been eliminated. Inserted into eqn (1.33a), it does not restore the ori-
ginal function s(t) but instead yields another important time function, called
the ‘autocorrelation function’ of s(t):

φss(τ) =
  
�

−∞

+∞

W(f ) exp (2π ifτ) df = 2
    
�

0

+∞

W(f ) cos (2πfτ) df (1.37)

The time variable has been denoted by τ in order to indicate that it is not
identical with the real time. In the usual definition of the autocorrelation
function it occurs as a delay time:

      
φ τ τss

T
T

T

T
s t s t t( )  lim  ( ) (   )

/

/

= +
→∞

−

+

0
0

01

0 2

2

� d (1.38)

The autocorrelation function indicates the extent to which a signal is pre-
served over the time τ.

Since φss is the Fourier transform of the power spectrum, the latter is also
obtained by Fourier transformation of the autocorrelation function:

W(f ) = 2
    
�

0

+∞

φss(τ) cos (2π fτ) dτ (1.39)

Equations (1.37) and (1.39) are the mathematical expressions of the the-
orem of Wiener and Khinchine: power spectrum and autocorrelation func-
tion are Fourier transforms of each other.

If s(t + τ) in eqn (1.38) is replaced with s′(t + τ), where s′ denotes a time
function different from s, one obtains the ‘cross-correlation function’ of the
two signals s(t) and s′(t):

      
φ τ τss

T
T

T

T
s t s t t′

→∞
−

+

= ′ +( )  lim  ( ) (   )
/

/

0
0

01

0 2

2

� d (1.40)
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The cross-correlation function is a measure of the statistical similarity of
two function s and s′.

In a certain sense a sine or cosine signal can be considered as an element-
ary signal; it is unlimited in time and steady in all its derivatives, and its
spectrum consists of a single line. The counterpart of it is Dirac’s delta
function δ (t): it has one single line in the time domain, so to speak, whereas
its amplitude spectrum is constant for all frequencies, i.e. S(f ) = 1 for the
delta function. This leads to the following representation:

      
δ π( )  lim exp ( )t ft f

f
f

f

=
→∞

−

+

0
0

0

2� i d (1.41)

It can easily be shown that the delta function has the following funda-
mental property:

s(t) =
  
�

−∞

+∞

s(τ)δ (t − τ) dτ (1.42)

where s(t) is any function of time. Accordingly, any signal can be con-
sidered as a close succession of very short pulses as indicated in Fig. 1.3.
Especially, for s(t) ≡ 1 we obtain

  
�

−∞

+∞

δ (t) dt = 1 (1.43)

The delta function δ (t) is zero for all t ≠ 0; the relation (1.43) indicates that
its value at t = 0 must be infinite.

Now we consider a linear but otherwise unspecified transmission system.
Examples of acoustical transmission systems are all kinds of ducts (air
ducts, mufflers, wind instruments, etc.) and resonators. Likewise, any two

Figure 1.3 Continuous function as the limiting case of a close succession of
short impulses.
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Figure 1.4 Impulse response of a linear system.

points in an enclosure may be considered as the input and output terminal
of an acoustic transmission system. Linearity means that multiplying the
input signal with a factor results in an output signal which is augmented by
the same factor. The properties of such a system are completely character-
ised by the so-called ‘impulse response’ g(t), i.e. the output signal which is
the response to an impulsive input signal represented by the Dirac func-
tion δ (t) (see Fig. 1.4). Since the response cannot precede the excitation,
the impulse response of any causal system must vanish for t < 0. If g(t) is
known the output signal s′(t) with respect to any input signal s(t) can be
obtained by replacing the Dirac function in eqn (1.42) with its reponse, i.e.
with g(t):

s′(t) =
  
�

−∞

+∞

s(τ)g(t − τ) dτ =
  
�

−∞

+∞

g(τ)s(t − τ) dτ (1.44)

This operation is known as the convolution of two functions s and g. A
common shorthand notation of it is

s′(t) = s(t) * g(t) = g(t) * s(t) (1.44a)

Equation (1.44) has its analogue in the frequency domain, which looks
even simpler: let S(f ) be the complex spectrum of the input signal s(t) of our
linear system, then the spectrum of the resulting output signal s′(t) is

S′(f ) = G(f )S(f ) (1.45)

The complex function G(f ) is the ‘transmission function’ or ‘transfer func-
tion’ of the system; it is related to the impulse response by the Fourier
transformation:

G(f ) =
  
�

−∞

+∞

g(t) exp (−2π ift) dt (1.46a)

g(t) =
  
�

−∞

+∞

G(f ) exp (2π ift) df (1.46b)
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with G(−f ) = G*(f ) since g(t) is a real function. The transfer function G(f )
has also a direct meaning: if a harmonic signal with frequency f is applied
to a transmission system as shown in Fig. 1.4 its amplitude will be changed
by the factor | G(f ) | and its phase will be shifted by the phase angle of G(f ).

1.5 Sound pressure level and sound power level

In the frequency range in which our hearing is most sensitive (1000–3000 Hz)
the threshold of sensation and the threshold of pain in hearing are separ-
ated by about 13 orders of magnitude in intensity. For this reason it would
be impractical to characterise the strength of a sound signal by its sound
pressure or its intensity. Instead, the so-called ‘sound pressure level’ is gen-
erally used for this purpose, defined by

    
SPL

p

p
  log=







20 10

0

rms  decibels (1.47)

In this definition, prms denotes the ‘root mean square’ pressure as introduced
in Section 1.3. p0 is an internationally standardised reference pressure and
its value is 2 × 10−5 N/m2, which corresponds roughly to the normal hearing
threshold at 1000 Hz. The ‘decibel’ (abbreviated dB) is not a unit in a
physical sense but is used rather to recall the above level definition. Strictly
speaking, prms as well as the SPL are defined only for stationary sound
signals since they both imply an averaging process.

According to eqn (1.47), two different sound fields or signals may be
compared by their level difference:

    
∆SPL

p

p
  log

( )

( )
= 20 1

2

rms

rms

 decibels (1.47a)

It is often convenient to express the sound power delivered by a sound
source in terms of the ‘sound power level’, defined by

    
PL

P

P
  log=







10

0

 decibels (1.48)

where P0 denotes a reference power of 10−12 W. Using this quantity, the
sound pressure level produced by a point source with power P can be
expressed as follows:

    
SPL PL
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r
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−20

0

    11 dB with r0 = 1 m (1.49)
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1.6 Some properties of human hearing

Since the ultimate consumer of all room acoustics is the listener, it is import-
ant to consider at least a few facts relating to aural perception. More
information may be found in Ref. 2, for instance. One of the most obvious
facts of human hearing is that the ear is not equally sensitive to sounds of
different frequencies. Generally, the loudness at which a sound is perceived
depends, of course, on its objective strength, i.e. on its sound pressure level.
Furthermore, it depends in a complicated manner on the spectral composi-
tion of the sound signal, on its duration and on several other factors. The
loudness is often characterised by the ‘loudness level’, which is the sound
pressure level of a 1000 Hz tone which appears equally loud as the sound
to be characterised. The unit of the loudness level is the ‘phon’.

Figure 1.5 presents the contours of equal loudness level for sinusoidal
sound signals which are presented to a listener in the form of frontally
incident plane waves. The numbers next to the curves indicate the loudness
level. The lowest, dashed curve which corresponds to a loudness level of
3 phons marks the threshold of hearing. According to this diagram, a
pure tone with a SPL of 40 decibels has by definition a loudness level of
40 phons if its frequency is 1000 Hz, its loudness level is only 24 phons at
100 Hz whereas at 50 Hz it would be almost inaudible.

Using these curves, the loudness level of any pure tone can be evaluated
from its frequency and its sound pressure or intensity level. In order to
simplify this somewhat tedious procedure, meters have been constructed
which measure the sound pressure level. The contours of equal loudness are

Figure 1.5 Contours of equal loudness level for frontal sound incidence.
The dashed curve corresponds to the average hearing threshold.
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taken into account by electrical networks, the frequency-dependent attenu-
ation of which approximates to the shape of these curves. Several attenuation
functions are in use and have been standardised internationally; the most
common of them is the A-weighting curve. Consequently, the result of such
a measurement is not the loudness level in phons, but the ‘A-weighted
sound pressure level’ in dB(A).

Whenever such an instrument is applied to a sound signal with more
complex spectral structure, the result of measurement may deviate consid-
erably from the true loudness level. The reason for such errors is the fact
that, in our hearing, weak spectral components are partially or completely
masked by stronger ones and that this effect is not modelled in the above-
mentioned sound level meters. More reliable procedures for the measure-
ment of loudness level which include some spectral analysis of the sound
signal are avaliable nowadays, but they have not found widespread applica-
tion so far.

The loudness level as defined above has a fundamental defect, namely
that doubling the subjective sensation of loudness does not correspond to
twice the loudness level as should be expected. Instead it corresponds only
to an increase of about 10 phons. This fault is avoided by the loudness scale
with the ‘sone’ as a unit. The sone scale is defined in such a way that 40
phons correspond to 1 sone and that every increase of the loudness level by
10 phons corresponds to doubling the number of sones. Nowadays instru-
ments as well as computer programs are available which are able to meas-
ure or to calculate the loudness of almost any type of sound signal, taking
into account the above-mentioned masking effect.

Another important property of our hearing is its ability to detect the
direction from which a sound wave is arriving, and thus to localise the
direction of sound sources. For sound incidence from a lateral direction it is
easy to understand how this effect is brought about: an originally plane or
spherical wave is distorted by the human head, by the pinnae and – to a
minor extent – by the shoulders and the trunk. This distortion depends on
sound frequency and the direction of incidence. As a consequence, the sound
signals at both ears show characteristic differences in their amplitude and
phase spectrum or, to put it more simply, at lateral sound incidence one ear
is within the shadow of the head but the other is not. The interaural ampli-
tude and phase differences caused by these effects enable our hearing to
reconstruct the direction of sound incidence.

Quantitatively, the changes a sound signal undergoes on its way to the
entrance of the ears can be described by the so-called ‘head transfer func-
tions’ which characterise the transmission from a very remote point source
to the ear canal, for instance its entrance. Such transfer functions have been
measured by many researchers.3 As an example, Fig. 1.6 shows head trans-
fer functions for eleven lateral angles of incidence directions ϕ relative to
that obtained at frontal sound incidence (ϕ = 0°); one diagram shows the
magnitude expressed in decibels, and the other one the group delays,



Sound waves, sources and hearing 23

Figure 1.6 Head transfer functions for several directions of sound incidence in the
horizontal plane, relative to that for frontal incidence, average over 25 subjects:
(a) amplitude (in logarithmic representation); (b) group delay (after Blauert3).
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i.e. the functions dψ(ω)/dω. By comparing the curves of ϕ = 90° and ϕ = 270°,
the shadowing effect of the head becomes obvious.

However, if the sound source is situated within the vertical symmetry
plane, this explanation fails since then the source produces equal sound
signals at both ear canals. But even then the ear transfer functions show
characteristic differences for various elevation angles of the source, and it is
commonly believed that the way in which they modify a sound signal en-
ables us to distinguish whether a sound source is behind, above or in front
of our head.

These considerations are valid only for the localisation of sound sources in
a free sound field. In a closed room, however, the sound field is made up of
many sound waves propagating in different directions, accordingly matters
are more complicated. We shall discuss the subjective effects of more com-
plex sound fields as they are encountered in room acoustics in Chapter 7.

1.7 Sound sources

In room acoustics we are concerned with three types of sound source: the
human voice, musical instruments, and technical noise sources. (We do not
consider loudspeakers here because they reproduce the sounds from other
sources.)

It is a common feature of all these sources that the sounds they produce
have a more or less complicated spectral structure – apart from some rare
exceptions. In fact, it is the spectral content of speech signals (phonems)
which gives them their characteristics. Similarly, the timbre of musical sounds
is determined by their spectra.

The signals emitted by most musical instruments, in particular by string
and wind instruments including the organ, are nearly periodic. Therefore,
their spectra consist mainly of many equally spaced lines (see Section 1.4),
and it is the frequency of the lowest component, the fundamental, which
determines what we perceive as the pitch of a tone. It is evident that our ear
receives many harmonic components of quite different frequencies even if
we listen to a single tone. Likewise, many speech sounds, in particular vowels
and voiced consonants, have a line structure. As an example, Fig. 1.7 presents
the time function and the amplitude spectrum of three vowels.4 There are
some characteristic frequency ranges in which the overtones are especially
strong. These are called the ‘formants’ of the vowel.

For normal speech the fundamental frequency lies between 50 and 350 Hz
and is identical to the frequency at which the vocal chords vibrate. The
total frequency range of conversational speech may be seen from Fig. 1.8
which plots the long-time power spectrum of continuous speech, both for
male and female speakers.5 The high-frequency energy is mainly due to the
consonants, for instance to fricatives such as | s | or | f |, or for plosives such
as | p | or | t |. Since consonants are of particular importance for the intelli-
gibility of speech, a room or hall intended for speech, as well as a public
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Figure 1.8 Long-time power density spectrum for continuous speech 30 cm from
the mouth (after Flanagan5).

address system, should transmit the high frequencies with great fidelity.
The transmission of the fundamental vibration, on the other hand, is less
important since our hearing is able to reconstruct it if the periodic sound
signal is rich in higher harmonics.

Among musical instruments, large pipe organs have the widest frequency
range, reaching from 16 Hz to about 9 kHz. (There are some instruments,
especially percussion instruments, which produce sounds with even higher
frequencies.) The piano follows, having a frequency range which is smaller
by about three octaves, i.e. by nearly a decade. The frequencies of the
remaining instruments lie somewhere within this range. This is true, how-
ever, only for the fundamental frequencies. Since almost all instruments
produce higher harmonics, the actual range of frequencies occurring in
music extends still further, up to about 15 kHz. In music, unlike speech, all
frequencies are of almost equal importance, so it is not permissible deliber-
ately to suppress or to neglect certain frequency ranges. On the other hand,
the entire frequency range is not the responsibility of the acoustical engin-
eer. At 10 kHz and above the attenuation in air is so large that the influence
of a room on the propagation of high-frequency sound components can
safely be neglected. At frequencies lower than 50 Hz geometrical considera-
tions are almost useless because of the large wavelengths of the sounds;
furthermore, at these frequencies it is almost impossible to assess correctly
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the sound absorption by vibrating panels or walls which influences the
reverberation, especially at low frequencies. This means that, in this fre-
quency range too, room acoustical design possibilities are very limited. On
the whole, it can be stated that the frequency range relevant to room acous-
tics reaches from 50 to 10 000 Hz, the most important part being between
100 and 5000 Hz.

The acoustical power output of the sound sources as considered here is
relatively low by everyday standards. The human voice generates a sound
power ranging from 0.001 µW (whispering) to 1000 µW (shouting), the
power produced in conversational speech is of the order of 10 µW, corres-
ponding to a sound power level of 70 dB. The power of a single musical
instrument may lie in the range from 10 µW to 100 mW. A full symphony
orchestra can easily generate a sound power of 10 W in fortissimo pas-
sages. It may be added that the dynamic range of most musical instruments
is about 30 dB (woodwinds) to 50 dB (string instruments). A large orches-
tra can cover a dynamic range of 100 dB.

An important property of the human voice and musical instruments is their
directionality, i.e. the fact that they do not emit sound with equal intensity
in all directions. In speech this is because of the ‘sound shadow’ cast by the
head. The lower the sound frequency, the less pronounced is the reduction
of sound intensity by the head, because with decreasing frequencies the
sound waves are increasingly diffracted around the head. In Figs 1.9a and
1.9b the distribution of the relative pressure level for different frequency
bands is plotted on a horizontal plane and a vertical plane respectively.
These curves are obtained by filtering out the respective frequency bands
from natural speech; the direction denoted by 0° is the frontal direction.

Musical instruments usually exhibit a pronounced directionality because
of the linear dimensions of their sound-radiating surfaces, which, in the
interest of high efficiency, are often large compared with the wavelengths.
Unfortunately general statements are almost impossible, since the direc-
tional distribution of the radiated sound changes very rapidly, not only
from one frequency to the other; it can be quite different for instruments of
the same sort but different manufacture. This is true especially for string
instruments, the bodies of which exhibit very complicated vibration pat-
terns, particularly at higher frequencies. The radiation from a violin takes
place in a fairly uniform way at frequencies lower than about 450 Hz; at
higher frequencies, however, matters become quite involved. For wind in-
struments the directional distributions exhibit more common features, since
here the sound is not radiated from a curved anisotropic plate with complic-
ated vibration patterns but from a fixed opening which is very often the end
of a horn. The ‘directional characteristics of an orchestra’ are highly in-
volved, but space is too limited here to discuss this in detail. For the room
acoustician, however, it is important to know that strong components,
particularly from the strings but likewise from the piano, the woodwinds
and, of course, from the tuba, are radiated upwards. For further details we
refer to the exhaustive account of J. Meyer.6
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Figure 1.9 Directional distribution of speech sounds for two different frequency
bands. The arrow points in the viewing direction. (a) in a horizontal plane; (b) in
a vertical plane.
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Figure 1.10 Examples of measured autocorrelation functions: (a) music motif A;
(b) music motif B (both from Table 1.1) (after Ando8).

In a certain sense, the sounds from natural sources can be considered as
statistical or stochastic signals, and in this context their autocorrelation
function is of interest as it gives some measure of a signal’s ‘tendency of
conservation’. Autocorrelation measurements on speech and music have
been performed by several authors.7,8 Here we are reporting results ob-
tained by Ando, who passed various signals through an A-weighting filter
and formed their autocorrelation function according to eqn (1.38) with the
finite integration time T0 = 35 s. Two of his results are depicted in Fig. 1.10.
The effective duration of the autocorrelation function is defined by the
delay τe, at which its envelope is just one-tenth of its maximum. These
values are indicated in Table 1.1 for a few signals. They range from about
10 to more than 100 ms.

The variety of possible noise sources is too large to discuss them in any
detail. A common kind of noise in a room is sound intruding from adjacent
rooms or from outside through walls, doors and widows, due to insufficient
sound insulation. A typical noise source in halls is the ventilation or air con-
ditioning system; some of the noise produced by the machinery propagates
in the air ducts and is radiated into the hall through the air outlets.
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Table 1.1 Duration of autocorrelation functions of various sound signals
(after Ando8)

Motif Name of piece Composer Duration τe (ms)

A Royal Pavane Gibbons 127
B Sinfonietta opus 48, 4th movement

(Allegro con brio) Arnold 43
C Symphony No. 102 in B flat major,

2nd movement (Adagio) Haydn 65
D Siegfried Idyll; bar 322 Wagner 40
E Symphony KV551 in C major (Jupiter),

4th movement (Molto allegro) Mozart 38
F Poem read by a female Kunikita 10
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2 Reflection and scattering

Up to now we have dealt with sound propagation in a medium which was
unbounded in every direction. In contrast to this simple situation, room
acoustics is concerned with sound propagation in enclosures where the
sound conducting medium is bounded on all sides by walls, ceiling and
floor. These room boundaries usually reflect a certain fraction of the sound
energy impinging on them. Another fraction of the energy is ‘absorbed’, i.e.
it is extracted from the sound field inside the room, either by conversion
into heat or by being transmitted to the outside by the walls. It is just this
combination of the numerous reflected components which is responsible
for what is known as ‘the acoustics of a room’ and also for the complexity
of the sound field in a room.

Before we discuss the properties of such involved sound fields we shall
consider in this chapter the process which is fundamental for their occur-
rence: the reflection of a plane sound wave by a single wall or surface. In
this context we shall encounter the concepts of wall impedance and absorp-
tion coefficient, which are of special importance in room acoustics. The
sound absorption by a wall will be dealt with mainly from a formal point
of view, whereas the discussion of the physical causes of sound absorption
and of the functional principles of various absorbent arrangements will be
postponed to a subsequent chapter.

Strictly speaking, the simple laws of sound reflection to be explained in
this chapter hold only for unbounded walls. Any free edge of a reflecting
wall or panel will scatter some sound energy in all directions. The same
happens when a sound wave hits any other obstacle of limited extent, such
as a pillar, a listener’s head or a wall irregularity which is not very small
compared with the sound wavelength. Since scattering is a common phe-
nomenon in room acoustics we shall briefly deal with it in this chapter.

Throughout this chapter we shall assume that the incident, undisturbed
wave is a plane wave. In reality, however, all waves originate from a sound
source and are therefore spherical waves or superpositions of spherical
waves. The reflection of a spherical wave from a plane wall is highly com-
plicated unless we can assume that the wall is rigid. More on this matter
may be found in the literature (see, for instance, Ref. 1). For our discussion
it may be sufficient to assume that the sound source is not too close to the
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reflecting wall or to the scattering obstacle so that the curvature of the
wave fronts can be neglected without too much error.

2.1 Reflection factor, absorption coefficient and wall impedance

If a plane wave strikes a plane and uniform wall of infinite extent, in
general a part of the sound energy will be reflected from it in the form of a
reflected wave originating from the wall, the amplitude and the phase of
which differ from those of the incident wave. Both waves interfere with
each other and form a ‘standing wave’, at least partially.

The changes in amplitude and phase which take place during the reflec-
tion of a wave are expressed by the complex reflection factor

R = | R | exp (iχ)

which is a property of the wall. Its absolute value as well as its phase angle
depend on the frequency and on the direction of the incident wave.

According to eqn (1.28), the intensity of a plane wave is proportional
to the square of the pressure amplitude. Therefore, the intensity of the
reflected wave is smaller by a factor | R |2 than that of the incident wave and
the fraction 1 − | R |2 of the incident energy is lost during reflection. This
quantity is called the ‘absorption coefficient’ of the wall:

α = 1 − | R |2 (2.1)

For a wall with zero reflectivity (R = 0) the absorption coefficient has its
maximum value 1. The wall is said to be totally absorbent or sometimes
‘matched to the sound field’. If R = 1 (in-phase reflection, χ = 0), the wall is
‘rigid’ or ‘hard’; in the case of R = −1 (phase reversal, χ = π), we speak of a
‘soft’ wall. In both cases there is no sound absorption (α = 0). The latter
case, however, very rarely occurs in room acoustics and only in limited
frequency ranges.

The acoustical properties of a wall surface – as far as they are of interest
in room acoustics – are completely described by the reflection factor for all
angles of incidence and for all frequencies. Another quantity which is even
more closely related to the physical behaviour of the wall and to its con-
struction is based on the particle velocity normal to the wall which is gen-
erated by a given sound pressure at the surface. It is called the wall impedance
and is defined by

    

Z
p

v
  =






n surface

(2.2)

where vn denotes the velocity component normal to the wall. For non-
porous walls which are excited into vibration by the sound field, the
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normal component of the particle velocity is identical to the velocity of the
wall vibration. Like the reflection factor, the wall impedance is generally
complex and a function of the angle of sound incidence.

Frequently the wall impedance is divided by the characteristic impedance
of the air. The resulting quantity is called the ‘specific acoustic impedance’:

    
ζ

ρ
  =

Z

c0

(2.2a)

The reciprocal of the wall impedance is the ‘wall admittance’; the recip-
rocal of ζ is called the ‘specific acoustic admittance’ of the wall.

As explained in Section 1.2 any complex quantity can be represented in
a rectangular coordinate system (see Fig. 1.2). This holds also for the
wall impedance. In this case, the length of this arrow corresponds to the
magnitude of Z while its inclination angle is the phase angle of the wall
impedance:

    
µ  arg ( )  arctan

Im

Re
= =







Z

Z

Z
(2.3)

If the frequency changes, the impedance will usually change as well and
also the length and inclination of the arrow representing it. The curve
described by the tips of all arrows is called the ‘locus of the impedance in
the complex plane’. A simple example of such a curve is shown in Fig. 2.8a.

2.2 Sound reflection at normal incidence

First we assume the wall to be normal to the direction in which the incident
wave is travelling, which is chosen as the x-axis of a rectangular coordinate
system. The wall intersects the x-axis at x = 0 (Fig. 2.1). The wave is com-
ing from the negative x-direction and its sound pressure is

pi(x, t) = S0 exp [i(ω t − kx)] (2.4a)

The particle velocity in the incident wave is according to eqn (1.9):

vi(x, t) =
    

S0

0ρ c
exp [i(ω t − kx)] (2.4b)

The reflected wave has a smaller amplitude and has undergone a phase
change; both changes are described by the reflection factor R. Furthermore,
we must reverse the sign of k because of the reversed direction of travel.
The sign of the particle velocity is also changed since ∂p/∂x has opposite
signs for positive and negative travelling waves. So we obtain for the re-
flected wave:
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Figure 2.1 Reflection of a normally incident sound wave from a plane wall.

pr(x, t) = RS0 exp [i(ω t + kx)] (2.5a)

vr(x, t) = −R
    

S0

0ρ c
exp [i(ω t + kx)] (2.5b)

The total sound pressure and particle velocity in the plane of the wall are
obtained simply by adding the above expressions and by setting x = 0:

p(0, t) = S0(1 + R) exp (iω t)

and

v(0, t) =
    

S0

0ρ c
(1 − R) exp (iω t)

Since the only component of particle velocity is normal to the wall, dividing
p(0, t) by v(0, t) gives the wall impedance:

    
Z c

R

R
  

  

  
=

+
−

ρ0
1

1
(2.6)

and from this
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Z c

Z c
  

  

  
  

  

  
=

−
+

=
−
+

ρ
ρ

ζ
ζ

0

0

1

1
(2.7)

A rigid wall (R = 1) has impedance Z = ∞; for a soft wall (R = −1) the
impedance will vanish. For a completely absorbent wall the impedance
equals the characteristic impedance of the medium.

Inserting eqn (2.7) into the definition (2.1) gives for the absorption
coefficient:
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α ζ

ζ ζ
  

Re ( )

| |   Re ( )  
=

+ +
4

2 12
(2.8)

In Fig. 2.2 this relation is represented graphically. The diagram shows
the circles of constant absorption coefficient in the complex ζ-plane, i.e.
abscissa and ordinate in this figure are the real and imaginary part of the
specific wall impedance, respectively. As α increases the circles contract
towards the point ζ = 1, which corresponds to complete matching of the
wall to the medium.

The distribution of sound pressure in the standing wave in front of the wall
is found by adding eqns (2.4a) and (2.5a), and evaluating the absolute value

S(x) = S0[1 + | R |2 + 2| R | cos (2kx + χ)]1/2 (2.9)

Similarly, for the particle velocity we find

i(x) =
    

S0

0ρ c
[1 + | R |2 − 2| R | cos (2kx + χ)]1/2 (2.10)

Figure 2.2 Circles of constant absorption coefficient in the complex wall
impedance plane. The numbers denote the magnitude of the absorption
coefficient.
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Figure 2.3 Standing sound wave in front of a plane surface with real reflection
factor R = 0.7. —— magnitude of sound pressure; - - - - magnitude of particle
velocity.

The time dependence of the pressure and the velocity is taken into account
simply by multiplying these expressions by exp (iωt). According to eqns
(2.9) and (2.10), the pressure amplitude and the velocity amplitude in the
standing wave vary periodically between the maximum values

pmax = S0(1 + | R |) and vmax =
    

S0

0ρ c
(1 + | R |) (2.11a)

and the minimum values

pmin = S0(1 − | R |) and vmin =
    

S0

0ρ c
(1 − | R |) (2.11b)

but in such a way that each maximum of the pressure amplitude coincides
with a minimum of the velocity amplitude and vice versa (see Fig. 2.3). The
distance of one maximum to the next is π /k = λ /2. So, by measuring the
pressure amplitude as a function of x, we can evaluate the wavelength.
Furthermore, the absolute value and the phase angle of the reflection factor
can also be evaluated. This leads to an important method of measuring the
impedance and the absorption coefficient of wall materials (see Section 8.6).

2.3 Sound reflection at oblique incidence
In this section we consider the more general case of sound waves whose
angles of incidence may be any value Θ. Without loss of generality, we can
assume that the wall normal as well as the wave normal of the incident
wave lie in the x–y plane of a rectangular coordinate system. The new
situation is depicted in Fig. 2.4.
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Figure 2.4 Sound reflection at oblique incidence.

Suppose we replace in eqn (2.4a) x by x′, the latter belonging to a coor-
dinate system, the axes of which are rotated by an angle Θ with respect to
the x–y system. The result is a plane wave propagating in a positive x′-
direction. According to the well-known formulae for coordinate trans-
formation, x′ and x are related by

x′ = x cos Θ + y sin Θ

Inserting this into the previously mentioned expression for the incident
plane wave we obtain for the latter

pi = S0 exp [−ik(x cos Θ + y sin Θ)] (2.12a)

(In this and the following expressions we omit, for the sake of simpli-
city, the factor exp (iωt), which is common to all pressures and particle
velocities.) For the calculation of the wall impedance we require the velo-
city component normal to the wall, i.e. the x-component. It is obtained
from eqn (1.2) which reads in the present case:

    
v

p

x
x   = −

1

0iω ρ
∂
∂

Applied to eqn (2.12a) this yields

(vi)x =
    

S0

0ρ c
cos Θ exp [−ik(x cos Θ + y sin Θ)] (2.12b)
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When the wave is reflected, as for normal incidence, the sign of x in the
exponent is reversed, since the direction is altered with reference to this
coordinate. Furthermore, the pressure and the velocity are multiplied by the
reflection factor R and −R, respectively:

pr = RS0 exp [−ik( −x cos Θ + y sin Θ)] (2.13a)

(vr)x = −
    

R

c

S0

0ρ
cos Θ exp [−ik(−x cos Θ + y sin Θ)] (2.13b)

The direction of propagation again includes an angle Θ with the wall nor-
mal, i.e. the reflection law well known in optics is also valid for the reflec-
tion of acoustical waves.

By setting x = 0 in eqns (2.12a) to (2.13b) and by dividing pi + pr by
(vi)x + (vr)x we obtain

    
Z

c R

R
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+
−

ρ0 1

1Θ
(2.14a)

and from this
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(2.14b)

The resulting sound pressure amplitude in front of the wall is given by

p(x, y) = S0[1 + | R |2 + 2| R | cos (2kx cos Θ + χ)]1/2 exp (−iky sin Θ)
(2.15)

This pressure distribution again corresponds to a standing wave, the maxima
of which are separated by a distance λ /2 cos Θ and which moves parallel to
the wall with a velocity

    
c

k k

c
y

y

    
sin

  
sin

= = =
ω ω

Θ Θ

Of special interest are surfaces the impedance of which is independent of the
direction of incident sound. This applies if the normal component of the par-
ticle velocity at the wall surface depends only on the sound pressure in front
of a wall element and not on the pressure in front of neighbouring elements.
Walls or surfaces with this property are referred to as ‘locally reacting’.

In practice, surfaces with local reaction are rather the exception than the
rule. They are encountered whenever the wall itself or the space behind it
is unable to propagate waves or vibrations in a direction parallel to its
surface. Obviously this is not true for a panel whose neighbouring elements
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Figure 2.5 Absorption coefficient of walls with specific impedance: (a) ζ = 3;
(b) ζ = 1.5 + 1.323i; (c) ζ = 1/3.

are coupled together by bending stiffness. Moreover, this does not apply to
a porous layer with an air space between it and a rigid rear wall. In the
latter case, however, local reaction of the various surface elements of the
arrangement can be brought about by rigid partitions which obstruct
the air space in any lateral direction and prevent sound propagation parallel
to the surface.

Using eqn (2.14b) the absorption coefficient is given by

  
α ζ

ζ ζ
( )  

Re ( ) cos

(| | cos )   Re ( ) cos   
Θ

Θ
Θ Θ

=
+ +

4

2 12
(2.16)

Its dependence on the angle of incidence is plotted in Fig. 2.5 for various
values of ζ.

2.4 A few examples

In this section we consider as examples two types of surface which are of
some practical importance as linings to room walls.
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Figure 2.6 Sound reflection from a porous layer with a distance d from a rigid
wall. The plotted curve is the pressure amplitude for r = ρ0c and d/λ = 5/16.

The first arrangement consists of a thin porous layer of fabric or some-
thing similar which is stretched or hung in front of a rigid wall at a distance
d from it and parallel to it. The x-axis is normal to the layer and the wall,
the former having the coordinate x = 0. Hence, the wall is located at x = d
(see Fig. 2.6). We assume that the porous layer is so heavy that it does not
vibrate under the influence of an incident sound wave. Any pressure differ-
ence between the two sides of the layer forces an air stream through the
pores with an air velocity vs. The latter is related to the pressures p in front
of and p′ behind the layer by

    
r

p p

v
s

s

  
  

=
− ′

(2.17)

rs being the flow resistance of the porous layer. We assume that this relation
is valid for a steady flow of air as well as for alternating air flow.

In front of the rigid wall but behind the porous layer there is a standing
wave which, for normal incidence of the original sound wave, is repres-
ented according to eqns (2.4a) to (2.5b) by

p′(x) = S′{exp [−ik(x − d)] + exp [ik(x − d)]}

= 2S′ cos [k(x − d)] (2.18)

v′(x) =
    

′S

ρ0c
{exp [−ik(x − d)] − exp [ik(x − d)]}

    
= − ′ − sin [ (   )]

2

0

iS

ρ c
k x d (2.19)

(In the exponents x has been replaced by x − d since the rigid wall is not at
x = 0 as before but at x = d.) The ratio of both expressions at x = 0 is the
‘wall’ impedance of the air layer of thickness d in front of a rigid wall:
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If the thickness of the air space is small compared with the wavelength, i.e.
if kd << 1, then we have approximately

    
′ ≈ =Z

c

kd

c

d
     

ρ ρ
ω

0 0
2

i i
(2.20a)

Because of the conservation of matter, the particle velocities in front of and
behind the layer must be equal to each other, and to the flow velocity
through the layer:

v(0) = v′(0) = vs (2.21)

Therefore the definition of the wall impedance of the whole arrangement
(layer plus air space plus rigid wall) yields

p(0) = Zvs (2.22)

whereas eqn (2.20) now reads

p′(0) = −iρ0cvs cot (kd) (2.23)

Substitution of both these expressions into eqn (2.17) results in

Z = rs − iρ0c cot (kd) (2.24)

Hence the impedance of the air space behind the porous layer is simply added
to the flow resistance to give the impedance of the complete arrangement.

In the complex plane of Fig. 2.2, this wall impedance would be repres-
ented by a vertical line at a distance rs/ρ0c from the imaginary axis. Increas-
ing the wave number or the frequency is equivalent to going repeatedly
from −i∞ to +i∞ on that line. As can be seen from the circles of constant
absorption coefficient, the latter has a maximum whenever Z is real, i.e.
whenever the depth d of the air space is an odd multiple of λ /4. Introducing
ζ = Z/ρ0c from eqn (2.24) into eqn (2.8) yields the following formula for
the absorption coefficient of a porous layer in front of a rigid wall:
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with r′s = rs /ρ0c.
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Figure 2.7 Absorption coefficient of a porous layer in front of a rigid surface.
(a) rs = 0.25 ρ0c, (b) rs = ρ0c, (c) rs = 4ρ0c. Left: rsd/Msc = 0 (i.e. layer kept at rest);
right: rsd/Msc = 4.

In Fig. 2.7a the absorption coefficient of this arrangement is plotted as a
function of the frequency for rs = ρ0c/4, rs = ρ0c and rs = 4ρ0c. Beginning
from very low values, the absorption coefficient assumes alternate max-
imum and minimum values. Minimum absorption occurs for all such fre-
quencies at which the distance d between the porous layer and the rigid
rear wall is a multiple of half the wavelength. This can be easily understood
since, at these distances, the standing wave behind the porous layer has a
zero of particle velocity in the plane of the layer, but energy losses can take
place only if the air is moving in the pores of the layer.

In reality a porous layer will not remain at rest in a sound field as as-
sumed so far but will vibrate as a whole, due to its finite mass. Then the
total velocity in the plane x = 0 of Fig. 2.6 consists of two components,
namely that due to the porosity of the material, vs = (p − p′)/rs, and the
velocity of the layer as a whole which is vm = (p − p′)/iωMs where Ms is the
mass of the layer per unit area (see eqn (2.26) with rs = 0). Hence, the ratio
of the pressure difference between both sides of the layer and the velocity
vs + vm is no longer rs but
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where the characteristic frequency ωs = rs/Ms has been introduced. Accord-
ingly, rs in eqn (2.24) – but not in eqn (2.25)! – must be replaced by Zr. It
is left to the reader to work out a modified formula corresponding to eqn
(2.25). Fig. 2.7b demonstrates the influence of the finite mass on the ab-
sorption coefficient of the arrangement.

In practical applications it may be advisable to provide for a varying
distance between the porous fabric and the rigid wall in order to smooth
out the irregularities of the absorption coefficient. This can be done by
hanging or stretching the fabric in deep folds.
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To this arrangement we now add a second layer or sheet which is not
porous and which is placed immediately in front (as seen by the incident
sound wave) of the porous layer, but in such a way that there is no contact
between the two layers. Under the influence of a sound wave, it can vibrate
in the direction of its normal. Its motion is merely controlled by its mass: if
there is a pressure difference ∆p between its faces this is related to vs by
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d
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where M is the mass of the non-porous sheet per unit area. We denote
the pressure behind the porous layer by p′ and the pressure in front of the
non-porous layer by p, i.e. at the surface of the whole construction, then,
instead of eqn (2.17), we now obtain
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Hence the wall impedance which is determined in a manner similar to that
used before is
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As in the preceding example, this impedance is represented in the complex
plane as a vertical with distance rs from the imaginary axis (see Fig. 2.8a).
But now the locus moves only once from −i∞ to +i∞ if the frequency is varied
from zero to infinity. When it crosses the real axis, the absolute value of the
wall impedance reaches its minimum. Since Z = p/vs, a given sound pressure
will then cause a particularly high velocity of the impervious sheet. Accord-
ing to eqn (2.27), this ‘resonance’ occurs at the angular frequency:
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where f0 = ω0/2π is the ‘resonance frequency’ of the system. As may also be
seen from Fig. 2.8a and Fig. 2.2, in resonance the absorption coefficient of
the system assumes a maximum.

In Fig. 2.8b the corresponding resonance curve is depicted, i.e. the velo-
city amplitude for a given pressure amplitude as a function of the sound
frequency
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Figure 2.8 (a) Locus of the wall impedance in the complex impedance plane for
resonance system. (b) Ratio of velocity to pressure amplitude as a function of the
driving frequency for a resonance system.

where the damping constant
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2
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has been introduced.
Assuming that δ is small compared with ω0,

ω1,2 = ω0 ± δ

are the angular frequencies for which the phase angle of the wall impedance
becomes ±45°. At the same time the value of the velocity amplitude at these
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frequencies is below the maximum value S/2δM by a factor (2)1/2. The
difference ∆ω = ω1 − ω2 is the ‘half-width’ of the resonance system or, di-
vided by the resonance angular frequency ω0, the ‘relative half-width’, which
is the reciprocal of the ‘quality factor’ or ‘Q-factor’ Q:
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All these quantities may be used to characterise the sharpness of the
resonance.

Using eqns (2.8) and (2.27), the absorption coefficient is obtained as
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Here we have introduced the maximum absorption coefficient αmax and the
‘quality factor’ concerning the frequency dependence of the absorption, Qα:
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The physical meaning of Qα is similar to that of Q; it is related to the
frequencies at which the absorption coefficient has fallen to half its max-
imum value. It takes into account not only the losses caused by the porous
sheet but also the loss of vibrational energy due to re-radiation (reflection)
of sound from the surface of the whole arrangement.

Practical resonance absorbers will be discussed in Chapter 6.
As a last example we consider the ‘open window’, i.e. an imaginary,

laterally bounded surface behind which free space extends. This concept
played an important role as an absorption standard in the early days of
modern room acoustics, since by definition its absorption coefficient is 1.

When a plane sound wave strikes an open window at an angle Θ to its
normal, the component of the particle velocity normal to the ‘wall’ is v cos Θ,
where v is the particle velocity in the direction of propagation. Hence the
wall impedance is given by
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Thus the area does not react locally; its impedance depends on the angle of
incidence. By inserting this into eqns (2.14b) and (2.16) it is easily shown
that R = 0 and α = 1 for all angles of incidence.

We can enforce local reaction by filling the opening of the windows with
a large number of parallel tubes with thin and rigid walls whose axes are
perpendicular to the plane of the window. The entrances of these tubes are
flush with the window opening; the tubes are either infinitely long or their
opposite ends are sealed by a perfect absorber. In each of these tubes and
hence on the front face of this ‘wall’ we can apply
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where vn is the velocity component parallel to the tube axis. This expression
leads to
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The absorption is perfect only at normal incidence; at grazing incidence its
value approaches zero. If the absorption coefficient is averaged over all
directions of incidence (see Section 2.5), a value of 0.912 is obtained, whereas
if the lateral subdivision of the window opening is absent, the mean absorp-
tion coefficient is of course 1.

2.5 Random sound incidence

In a closed room, the typical sound field does not consist of a single plane
wave but is composed of many such waves each with its own particular
amplitude, phase and direction. To find the effect of a wall on such a
complicated sound field we ought to consider the reflection of each wave
separately and then to add all sound pressures.

With certain assumptions we can resort to some simplifications which
allow general statements on the effect of a reflecting wall. If the phases of
the waves incident on a wall are randomly distributed one can neglect all
phase relations and the interference effects caused by them. It is sufficient
then just to add or to average their energies which are proportional to the
squares of the pressures of the elementary waves. Furthermore we assume
that the intensities of the incident sound are uniformly distributed over all
possible directions, hence each solid angle element carries the same energy
per second to the wall. In this case we speak of ‘random sound incidence’,
and the sound field associated with it is referred to as a ‘diffuse sound field’.
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This type of sound field plays the role of a standard field in room acoustics,
and the reader will frequently encounter it in this book.

In the following it is convenient to use a spherical polar coordinate
system as depicted in Fig. 2.9. Its origin is the centre of a wall element dS,
the wall normal is its polar axis. We consider an element of solid angle
dΩ around a direction which is determined by the polar angle Θ and the
azimuth angle Φ. Expressed in these angular coordinates, the solid angle
element is dΩ = sin Θ dΘ dΦ.

First we calculate the dependence of the energy density, which is essen-
tially equal to the square of the sound pressure amplitude, on the distance
from the wall which, for the moment, is assumed to be perfectly rigid
(R = 1). For this case, according to eqn (2.15), the square of the pressure
amplitude with respect to a wave incident at angle Θ is

| p |2 = 2S2
0 [1 + cos (2kx cos Θ)] (2.37)

Multiplied by dΩ this represents the contribution to the total square
pressure due to the solid angle element with polar angle Θ. By averaging
eqn (2.33) over all directions on one side of the wall we obtain
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This quantity, divided by | p∞ |2 = 2S2
0, is plotted in Fig. 2.10 (solid curve) as

a function of the distance x from the wall. Immediately in front of the wall

Figure 2.9 Spherical polar coordinates.
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fluctuations of the square pressure occur, as they do in every standing
wave. With increasing distance, however, they fade out and the square
pressure approaches a constant limiting value which is half of that in front
of the wall. A microphone which is sensitive to the sound pressure indicates
a pressure level which is higher by 3 dB at the wall than at some distance
from it. For the same reason, the sound absorption of an absorbent surface
adjacent and perpendicular to a rigid wall is higher near the edge than at a
distance of several wavelengths from the wall.

Experimentally it may prove to be difficult to confirm eqn (2.34). The
reason for this is not so much the difficulty of establishing a sufficiently
diffuse sound field but rather the impossibility of realising the independence
of phases among the various components, at least at one single frequency,
as assumed in our derivation. When a room is acoustically excited by a
sinusoidal signal, the resulting steady state sound field is made up of a
number of ‘characteristic vibrations’ or normal modes (see Chapter 3),
the phases of which are inter-related in a well-defined way. These inter-
relations may be destroyed to a certain extent by replacing the sinusoidal
signal with random noise with a limited bandwidth. But then the pressure
distribution must also be averaged with respect to frequency over the excit-
ing frequency band. Experimentally, this averaging could be performed by
exciting a relatively large room with random noise which has passed a
band-pass filter. As an example, the dotted curve of Fig. 2.10 plots the
result of averaging 〈 | p |2〉 over an octave band, i.e. a frequency band
with f2 = 2f1 where f1 and f2 denote the limiting frequencies of the band.
Here, the wavelength λ corresponds to the frequency √(f1f2) = f1√2. Now
the standing wave has virtually levelled out for all distances exceeding

Figure 2.10 Squared sound pressure amplitude in front of a rigid wall,
for random sound incidence. sine tone, ------- random noise of
one octave bandwidth.
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x > 0.5λ, but there is still a pronounced increase of sound pressure if
the wall is approached. This increase of | p |2 to twice its far distance
value is obviously caused by a certain relation between the phases of all
impinging and reflected waves which is enforced by the wall. In any case we
can conclude that in a diffuse sound field phase effects are limited to a
relatively small range next to the walls which is of the order of half a
wavelength.

Now we again consider a wall element with area dS. Its projection in the
direction Φ, Θ is dS cos Θ (see Fig. 2.9). Thus I cos Θ dS dΩ is the sound
energy arriving per second on dS from an element dΩ of solid angle around
the considered direction. By integrating this over all solid angle elements,
assuming I independent of Φ and Θ, we obtain the total energy per second
arriving at dS:
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From the energy I cos Θ dS dΩ the fraction α(Θ) is absorbed, thus the
totally absorbed energy per second is
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By dividing these two expressions we get the absorption coefficient for
random or uniformly distributed incidence:
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This is occasionally referred to as the ‘Paris’ formula’ in the literature.
For locally reacting surfaces we can express the angular dependence of

the absorption coefficient by eqn (2.16). If this is done and the integration
is performed, we obtain
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Figure 2.11 Curves of constant absorption coefficient in the impedance plane for
random sound incidence. The ordinate is the absolute value. The abscissa is the
phase angle of the specific impedance.

Here the wall impedance is characterised by the absolute value and the
phase angle µ of the specific impedance
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The content of this formula is represented in Fig. 2.11 in the form of curves
of constant absorption coefficient αuni in a coordinate system, the abscissa
and the ordinate of which are the phase angle and the absolute value of the
specific impedance, respectively. The absorption coefficient has its absolute
maximum 0.951 for the real impedance ζ = 1.567. Thus, in a diffuse sound
field, a locally reacting wall can never be totally absorbent.

It should be mentioned that recently the validity of the Paris’ formula
has been called into question by Makita and Hidaka.2 These authors
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recommend replacing the factor cos Θ in eqns (2.39) and (2.40) by a
somewhat more complicated weighting function. This, of course, would
also modify eqn (2.42).

2.6 Scattering, diffuse reflection

So far we have considered sound reflection from walls of infinite extension.
If a reflecting wall is finite its boundary will become the origin of an addi-
tional sound wave when it is irradiated with sound. This additional wave is
brought about by diffraction and hence may be referred to as a ‘diffraction
wave’. It spreads more or less in all directions.

The simplest example is diffraction by a semi-infinite wall, i.e. a rigid
plane with one straight edge as depicted in Fig. 2.12. If this wall is exposed
to a plane sound wave at normal incidence one might expect that it reflects
some sound into a region A, while another region B, the ‘shadow zone’,
would remain completely free of sound. This would indeed be true if the
acoustical wavelength were vanishingly small. In reality, however, the dif-
fraction wave originating from the edge of the wall modifies this picture as
is shown in the diagram at the right side of the figure which plots the
squared sound pressure at some distance d from the wall for kd = 100.
Behind the wall, i.e. in region B, there is still some sound intruding into the
shadow zone. And in region C (x > 0) the plane wave is disturbed by inter-
ferences with the diffraction wave. On the whole, the boundary between
the shadow and the illuminated region is not sharp but blurred by the
diffraction wave. A similar effect occurs at the upper boundary of region A.

If the ‘wall’ is a bounded reflector of limited extension, for example a
freely suspended panel, the line source from which the diffraction wave
originates is wound around the edge of the reflector, so to speak. As an

Figure 2.12 Diffraction of a plane wave from a rigid half-plane. The diagram
shows the squared sound pressure amplitude at a distance d from the plane with
kd = 100 (after Ref. 3).



52 Room Acoustics

example, Fig. 2.13a shows a rigid circular disc with radius a, irradiated
from a point source S. Consider the sound pressure at point P. Both P and
S are situated on the middle axis of the disc at distances R1 and R2 from its
centre, respectively. Figure 2.13b shows the squared sound pressure of the
reflected wave in P as a function of the disc radius as calculated from the
approximation
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For very small disc radii, the reflected sound is negligibly weak since the
primary sound wave is nearly completely diffracted around the disc, the
obstacle is virtually not present. With increasing disc radius, the pressure in
P grows considerably from a certain value on it shows strong fluctuations.
The latter are caused by interference between the sound reflected specularly
from the disc plane and the diffraction wave from its rim. We consider the
reflection from the disc as fully developed if | p |2 equals its average value
which is half its maximum value. This is the case if the argument of the sine
in eqn (2.43) is π /4. This condition leads to a minimum frequency fmin

above which the reflector is effective:
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Figure 2.13 Sound reflection from a circular disc: (a) arrangement (S = sound
source, P = observation point); (b) squared sound pressure amplitude of reflected
wave, H = 2(1/R1 + 1/R2)

−1.
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has been used. (In the second version of eqn (2.44) all lengths are to be
expressed in metres.) A circular panel with a diameter of 1 m, for instance,
viewed from a distance of 5 m (R1 = R2 = 5 m) is an effective reflector for
frequencies exceeding 1700 Hz. For frequencies below this limit it has a
much lower effect.

Similar considerations applied to a rigid strip with the width h yield for
the minimum frequency of geometrical reflections
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with the same meaning of H as in eqn (2.44a). Here Θ is the angle of sound
incidence. (In another estimate5 the factor 0.53 is omitted.)

Generally, any body or surface of limited extension distorts a primary
sound field by diffraction unless its dimensions are very small compared to
the wavelength. Part of the diffracted sound is scattered more or less in all
directions. For this reason this process is also referred to as ‘sound scat-
tering’. (The role of sound scattering by the human head in hearing has
already been mentioned in Section 1.6.)

The scattering efficiency of a body is often characterised by its ‘scattering
cross-section’, defined as the ratio of the total power scattered Ps and the
intensity I0 of the incident wave:
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If the dimensions of the scattering body are small compared to the wave-
length, Ps and hence Qs is very small. In the opposite case of short wave-
lengths, the scattering cross-section approaches twice its visual cross-section,
i.e. 2πa2 for a sphere or a circular disc with radius a. Then one half of the
scattered power is concentrated into a narrow beam behind the obstacle
and forms its shadow by interference with the primary wave while the
other half is deflected from its original direction.

Very often a wall is not completely plane but contains regular or irregu-
lar coffers, bumps or other projections. If these are very small compared to
the wavelength, they do not disturb the wall’s ‘specular’ reflection as treated
in the preceding sections of this chapter. In the opposite case, i.e. if they are
large compared with the wavelength, each of their faces may be treated as a
plane or curved wall section, reflecting the incident sound specularly. There
is an intermediate range of wavelengths, however, in which each projection
adds a scattered wave to the specular reflection of the whole wall. If the
wall has an irregular surface structure, a large fraction of the reflected
sound energy will be scattered in all directions. In this case we speak of a
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‘diffusely reflecting wall’. In Section 8.8 methods for measuring the scatter-
ing efficiency of acoustically rough surfaces will be described.

As an example of a sound scattering boundary, we consider the ceiling of
a particular concert hall.4 It is covered with many bodies made of gypsum
such as pyramids, spherical segments, etc.; their depth is about 30 cm on
the average. Figure 2.14 shows the directional distribution of the sound
reflected from that ceiling, measured at a frequency of 1000 Hz at normal
incidence of the primary sound wave; the plotted quantity is the sound
pressure level. (This measurement has been carried out on a model ceiling).
The pronounced maximum at 0° corresponds to the specular component
which is still of considerable strength.

Diffuse or partially diffuse reflections occur not only at walls with a geo-
metrically structured surface but also at walls which are smooth and have
non-uniform impedance instead. To understand this we return to Fig. 2.12
and imagine that the rigid screen is continued upwards by a totally absorb-
ing wall. This would not change the structure of the sound field left of the

Figure 2.14 Directional distribution of sound, scattered from a highly irregular
ceiling. Polar representation of the pressure amplitude.
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wall, i.e. the disturbance caused by the diffraction wave. Therefore we can
conclude that any change of wall impedance creates a diffraction wave
provided the range in which the change occurs is small compared with the
wavelength.

A practical example of this kind are walls lined with relatively thin panels
which are mounted on a rigid framework. At the points where the lining is
fixed it is very stiff and cannot react to the incident sound field. Between
these points, however, the lining will perform bending vibrations, particu-
larly if the frequency of the exciting sound field is close to the resonance
frequency of the lining (see eqn (2.28)). Scattering will be even more effect-
ive if adjacent partitions are tuned to different resonance frequencies due to
variations of the panel masses or the depths of the air space behind them.

In Fig. 2.15 we consider a plane wall subdivided into strips with equal
width d and with different reflection factors Rn = | Rn | exp (iχn). We assume
that d is noticeably smaller than the wavelength. If a plane wave arrives
normally at the wall, it will excite all strips with equal amplitude and phase,
and each of them will react to it by emitting a secondary wave or wavelet.
We consider those wave portions which are re-emitted (i.e. reflected) from
corresponding points of the strips at some angle ϑ. Their phases contain the
phase shifts χn caused by the reflection and those due to the path differences
d sin ϑ between wavelets from adjacent strips. The sound pressure far from
the wall is obtained by summation over all contributions:
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If all strips had the same reflection factor, all contributions would have the
same phase angles for ϑ = 0 and add to a particularly high pressure ampli-
tude, corresponding to the specular reflection. It is evident that by varying

Figure 2.15 Sound reflection from an arrangement of parallel and equidistant
strips with different reflection factors.
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| Rn | and χn the specular reflection can be destroyed more or less and its
energy scattered into non-specular directions instead.

In the following we assume that the reflection factor of all partitions
shown in Fig. 2.15 has the magnitude 1. Our goal is to achieve maximum
diffusion of the reflected sound. In principle, this could be effected by dis-
tributing the phase angles χn randomly within the interval from 0 to 2π
since randomising the phase angles is equivalent to randomising the direc-
tions in eqn (2.47). Complete randomness, however, would require a very
large number of elements.

Approximately the same effect can be reached with so-called pseudo-
random sequences of phase angles. If these sequences are periodic they lead
to reflection phase gratings with the grating constant Nd if N denotes the
number of elements within one period. As with optical gratings, construct-
ive interference of the wavelets reflected from corresponding elements will
occur if the condition
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is fulfilled. The integer m is the ‘diffraction order’. Introducing this condi-
tion into eqn (2.47) yields the sound pressure in the mth diffraction order:
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pm is the discrete Fourier transform of the sequence exp (iχn) as may be seen
by comparing this expression with eqn (1.35c). Hence, a uniform distribu-
tion of the reflected energy over all diffraction orders can be achieved by
finding phase shifts χn for which the power spectrum of exp (iχn) is flat.
Arrangements of this kind are often called ‘Schroeder diffusers’, after their
inventor.6 The required phase shifts can be realised by troughs in the wall
surface which are separated by rigid walls: a sound wave intruding into a
trough of depth hn will have attained a phase shift of χn = 2khn when it
reappears at the surface after reflection from the rear end. Accordingly the
required depths are
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fd = c/λd is the ‘design frequency’ of the diffuser.
One sequence which fulfils the condition of flat power spectrum is based

on ‘quadratic residues’7
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Figure 2.16 Quadratic residue diffuser (QRD) for N = 7.

with N being a selected prime number. The modulus function accounts for
the fact that all relevant phase angles are in the range from 0 to 2π. Quad-
ratic residue diffusers (QRD) are effective over a frequency range from fs to
(N − 1)fs. Figure 2.16 shows two periods of a QRD consisting of seven
different elements. In Fig. 2.17 the directional pattern of sound diffused by
it is presented. The fact that the lobes have finite widths and are not com-
pletely equal and symmetric is due to the finite extension of the diffuser.

Quadratic residue gratings which scatter sound in two dimensions can
also be constructed. Furthermore, several other sequences are known upon
which the design of Schroeder diffusers can be based, for instance primit-
ive roots of prime numbers, or Legendre sequences. For an overview, see

Figure 2.17 Scattering diagram of a QRD with N = 7 consisting of 14 elements
with a uniform spacing of λ /2, calculated with a more exact theory (see
Schroeder7).
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Ref. 8 where more literature on this interesting matter may be found.
Schroeder diffusers have an interesting side effect, namely significant sound
absorption in a wide frequency range. More will be said on this subject in
Section 6.8.
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3 The sound field in a closed
space (wave theory)

In the preceding chapter we saw the laws which a plane sound wave obeys
upon reflection from a single plane wall and how this reflected wave is
superimposed on the incident one. Now we shall try to obtain some insight
into the complicated distribution of sound pressure or sound energy in a
room which is enclosed on all sides by walls which are at least partially
reflecting.

We could try to describe the resulting sound field by means of a detailed
calculation of all the reflected sound components and by finally adding
them together; that is to say, by a manifold application of the reflection
laws which we dealt with in the previous chapter. Since each wave which
has been reflected from a wall A will be reflected from walls B, C, D, etc.,
and will arrive eventually once more at wall A, this procedure leads only
asymptotically to a final result, not to mention the calculations which grow
like an avalanche. Nevertheless, this method is highly descriptive and there-
fore it is frequently applied in a much simplified form in geometrical room
acoustics. We shall return to it in the next chapter.

In this chapter we shall choose a different way of tackling our problem
which will lead to a solution in closed form – at least a formal one. This
advantage is paid for by a higher degree of abstraction, however. Charac-
teristic of this approach are certain boundary conditions which have to be
set up along the room boundaries and which describe mathematically the
acoustical properties of the walls, the ceiling and the other surfaces. Then
solutions of the wave equations are sought which satisfy these boundary
conditions. This method is the basis of what is frequently called ‘the wave
theory of room acoustics’.

It will turn out that this method in its exact form too can only be applied
to highly idealised cases with reasonable effort. The rooms with which we
are concerned in our daily life, however, are more or less irregular in shape,
partly because of the furniture, which forms part of the room boundary.
Rooms such as concert halls, theatres or churches deviate from their basic
shape because of the presence of balconies, galleries, pillars, columns and
other wall irregularities. Then even the formulation of boundary conditions



60 Room Acoustics

may turn out to be quite involved, and the solution of a given problem
requires extensive numerical calculations. For this reason the immediate
application of wave theory to practical problems in room acoustics is very
limited. Nevertheless, wave theory is the most reliable and appropriate
theory from a physical point of view, and therefore it is essential for a more
than superficial understanding of sound propagation in enclosures. For the
same reason we should keep in mind the results of wave theory when
we are applying more simplified methods, in order to keep our ideas in
perspective.

3.1 Formal solution of the wave equation

The starting point for a wave theory representation of the sound field in a
room is again the wave equation (1.5), which will be used here in a time-
independent form. That is to say, we assume, as earlier, a harmonic time
law for the pressure, the particle velocity, etc., with an angular frequency
ω. Then the equation, known as the Helmholtz equation, reads

∆p + k2p = 0
    
k

c
  =

ω
(3.1)

Furthermore, we assume that the room under consideration has locally
reacting walls and ceiling, the acoustical properties of which are completely
characterised by a wall impedance depending on the coordinates and the
frequency but not on the angle of sound incidence.

According to eqn (1.2), the velocity component normal to any wall or
boundary is
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The symbol ∂/∂n denotes partial differentiation in the direction of the
outward normal to the wall. We replace vn by p/Z (see eqn (2.2)) and
obtain
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or, using the specific impedance ζ,
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Now it can be shown that the wave equation yields non-zero solutions
fulfilling the boundary condition (3.2a) or (3.2b) only for particular dis-
crete values of k, called ‘eigenvalues’.1,2 In the following material, we shall
frequently distinguish these quantities from each other by an index number
n or m, though it is often more convenient to use a trio of subscripts
because of the three-dimensional nature of the problem.

Each eigenvalue kn is associated with a solution pn(r), which is known as
an ‘eigenfunction’ or ‘characteristic function’. (Here r is used as an abbre-
viation for the three spatial coordinates.) It represents a three-dimensional
standing wave, a so-called ‘normal mode’ of the room. As mentioned earl-
ier, for a given enclosure the explicit evaluation of the eigenvalues and
eigenfunctions is generally quite difficult and requires the application of
numerical methods such as the Finite Element Method (FEM)3. There are
only a few room shapes for which the eigenfunctions can be presented in
closed form. An important example will be given in the next section.

At this point we need to comment on the quantity k in the boundary
condition (3.2a) or (3.2b). Implicitly, it is also contained in ζ, since the
specific wall impedance depends in general on the frequency ω = kc. We can
identify it with kn, the eigenvalue to be evaluated, by solving our boundary
problem. Then in general the boundary condition contains the parameters
which we are looking for. Another possibility is to give k (and hence ω) in
the boundary condition a fixed value, which may be given by the driving
frequency of a sound source.

It is only the latter case for which one can prove that the eigenfunctions
are mutually orthogonal, which means that
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where the integration has to be extended over the whole volume V enclosed
by the walls. Here Kn is a constant.

If all the eigenvalues and eigenfunctions, which in general are functions
of the frequency, are known, we can in principle evaluate any desired acous-
tical property of the room; for instance, its steady state response to arbit-
rary sound sources. Suppose the sound sources are distributed continuously
over the room according to a density function q(r), where q(r) dV is the
volume velocity of a volume element dV at r. Here q(r) may be a complex
function taking account of possible phase differences between the various
infinitesimal sound sources. Furthermore, we assume a common driving
frequency ω. By adding ρ0q(r) to the right-hand side of eqn (1.3) it is easily
seen that the Helmholtz equation (3.1) now has to be modified into

∆p + k2p = −iωρ0q(r) (3.4)
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with the same boundary condition as above. Since the eigenfunctions form
a complete and orthogonal set of functions, we can expand the source
function in a series of pn:
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p q Vn
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n n
n V

n( ) ( )    ( ) ( )r r r r= =∑ with d
1 ��� (3.5)

where the summation is extended over all possible combinations of sub-
scripts. In the same way the solution pω(r), which we are looking for can be
expanded in eigenfunctions:
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Our problem is solved if the unknown coefficients Dn are expressed by the
known coefficients Cn. For this purpose we insert both series into eqn (3.4):
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npn. Using this relation and equating term by term in the

equation above, we obtain:
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The final solution assumes a particularly simple form for the important
case of a point source at the point r0 which has a volume velocity Q. The
source function is represented mathematically by a delta function in this
case:

q(r) = Qδ(r − r0)

Because of eqn (1.42) the coefficients Cn in eqn (3.5) are then given by
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Using this relation and eqns (3.7) and (3.6), we finally find for the sound
pressure in a room excited by a point source of angular frequency ω :
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This is called ‘Green’s function’ of the room under consideration. It is
interesting to note that it is symmetric in the coordinates of the sound
source and of the point of observation. If we put the sound source at r, we
observe at point r0 the same sound pressure as we did before at r, when the
sound source was at r0. Thus eqn (3.8) is the mathematical expression of
the famous reciprocity theorem which can be applied sometimes with ad-
vantage to measurements in room acoustics.

Since the boundary conditions are usually complex equations containing
kn, the latter are in general complex quantities. Putting
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and assuming that δn << ωn, we obtain from eqn (3.8)
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Considered as a function of the frequency, this expression is the transfer
function of the room between the two points r and r0. At the angular
frequencies ω = ωn, the associated term of this series assumes a particularly
high absolute value. The corresponding frequencies fn = ωn/2π are called
‘eigenfrequencies’ of the room; sometimes they are referred to as ‘resonance
frequencies’ because of some sort of resonance occurring in the vicinity of
those frequencies. The δn will turn out later to be ‘damping constants’.

If the sound source is not emitting a sinusoidal signal but instead a signal
which is composed of several spectral components, then Q = Q(ω) can be
considered as its spectral function and we can represent the source signal as
a Fourier integral (see Section 1.4):

s(t) =
  
�

−∞

+∞

Q(ω) exp (iω t) dω

where we have used ω = 2π f as a variable of integration instead of f. Since
the response to any spectral component with angular frequency ω is just
given by eqns (3.8) or (3.10), the sound pressure at the point r as a function
of time is

p(r, t) =
  
�

−∞

+∞

pω(r) exp (iω t) dω

where Q in the formulae for pω has to be replaced by Q(ω).
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3.2 Normal modes in rectangular rooms with rigid boundaries

In order to put some life into the abstract formalism outlined in the preced-
ing section, we consider a room with parallel pairs of walls, the pairs being
perpendicular to each other. It will be referred to in the following as a
‘rectangular room’. In practice rooms with exactly this shape do not exist. On
the other hand, most concert halls or other halls, churches, lecture rooms
and so on are much closer in shape to the rectangular room than to any
other of simple geometry, and so the results obtained for strictly rectangular
rooms can be applied at least qualitatively to many rooms encountered in
practice. Therefore our example is not only intended for the elucidation of
the theory discussed above but has some practical bearing as well.

Our room is assumed to extend from x = 0 to x = Lx in the x-direction,
and similarly from y = 0 to y = Ly in the y-direction and from z = 0 to z = Lz

in the z-direction (see Fig. 3.1). As far as the properties of the wall are
concerned, we start with the simplest case, namely that of all walls being
rigid. That is to say, that at the surface of the walls the normal components
of the particle velocity must vanish.

In cartesian coordinates the Helmholtz equation (3.1) may be written
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The variables can be separated, which means that we can compose the
solution of three factors:

Figure 3.1 Rectangular room.
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p(x, y, z) = p1(x)p2(y)p3(z)

which depend on x only, on y only and on z only, respectively. If this
product is inserted into the Helmholtz equation, the latter splits up into
three ordinary differential equations. The same is true for the boundary
conditions. For instance, p1 must satisfy the equation

    

d

d

2
1

2
2

1 0
p

x
k px    + = (3.11)

together with the boundary condition
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x
1 0  = for x = 0 and x = Lx (3.11a)

Analogous equations hold for p2(y) and p3(z); the newly introduced con-
stants are related by

k2
x + k2

y + k2
z = k2 (3.12)

Equation (3.11) has the general solution

p1(x) = A1 cos (kxx) + B1 sin (kxx) (3.13)

The constants A1 and B1 are used for adapting this solution to the bound-
ary conditions (3.11a). So it is seen immediately that we must put B1 = 0,
since only the cosine function possesses at x = 0 the horizontal tangent
required by eqn (3.11a). For the occurrence of a horizontal tangent too at
x = Lx, we must have cos (kxLx) = ±1, thus kxLx must be an integral multiple
of π. The constant kx must therefore assume one of the allowed values
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as a consequence of the boundary conditions, nx being a non-negative inte-
ger. Similarly, we obtain for the allowed values of ky and kz
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Inserting these values into eqn (3.12) results in the following equation for
the eigenvalues of the wave equation:
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The eigenfunctions associated with these eigenvalues are simply obtained
by multiplication of the three cosines, each of which describes the depend-
ence of the pressure on one coordinate:

    
p x y z C

n x

L

n y

L

n z

L
n n n

x

x

y

y

z

z
x y z

( , , )  cos cos cos=






















π π π

(3.16)

where C is an arbitrary constant. This formula represents a three-dimen-
sional standing wave; of course, it is incomplete without the factor exp (iωt)
describing the time dependence of the sound pressure. The sound pressure
is zero for all times at those points at which at least one of the cosines
becomes zero. This occurs for all values of x which are odd integers of
Lx/2nx, and for the analogous values of y and z. So these points of vanish-
ing sound pressure form three sets of equidistant planes, called ‘nodal planes’,
which are mutually orthogonal. The numbers nx, ny and nz indicate the
numbers of nodal planes perpendicular to the x-axis, the y-axis and the z-
axis, respectively. (For non-rectangular rooms the surfaces of vanishing
sound pressure are generally no longer planes. They are referred to as ‘nodal
surfaces’.)

In Fig. 3.2 the sound pressure distribution in the plane z = 0 is depicted
for nx = 3 and ny = 2. The loops are curves of constant pressure amplitude,
namely for | p/pmax | = 0.25, 0.5 and 0.75. The intersections of vertical nodal
planes with the plane z = 0 are indicated by dotted lines. On either side of
such a line the sound pressures have opposite signs.

The eigenfrequencies corresponding to the eigenvalues of eqn (3.15), which
are real because of the special boundary condition (3.11a), are given by
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c
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  =
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(3.17)

In Table 3.1 the lowest 20 eigenfrequencies (in Hz) of a rectangular room
with dimensions Lx = 4.7 m, Ly = 4.1 m and Lz = 3.1 m are listed for
c = 340 m/s, together with the corresponding combinations of subscripts,
which indicate immediately the structure of the mode which belongs to the
respective eigenfrequency.
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Figure 3.2 Sound pressure distribution in the plane z = 0 of a rectangular room
for nx = 3 and ny = 2.

Table 3.1 Eigenfrequencies of a rectangular room with dimensions
4.7 × 4.1 × 3.1 m3 (in hertz)

fn nx ny nz fn nx ny nz

36.17 1 0 0 90.47 1 2 0
41.46 0 1 0 90.78 2 0 1
54.84 0 0 1 99.42 0 2 1
55.02 1 1 0 99.80 2 1 1
65.69 1 0 1 105.79 1 2 1
68.55 0 1 1 108.51 3 0 0
72.34 2 0 0 109.68 0 0 2
77.68 1 1 1 110.05 2 2 0
82.93 0 2 0 115.49 1 0 2
83.38 2 1 0 116.16 3 1 0

By using the complex representation of vibrational quantities, i.e. by em-
ploying cos x = (e ix + e−ix)/2, eqn (3.16) can be written in the following form:
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wherein the summation has to be extended over the eight possible com-
binations of signs in the exponent. Each of these eight terms – multiplied by
the usual time factor exp (iωt) – represents a plane travelling wave, whose
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direction of propagation is defined by the angles βx, βy and βz, which it
makes with the coordinate axes, where
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If one of the three subscripts, for instance nz, equals zero, then the corres-
ponding angle (βz in this example) is 90°; the propagation takes place
perpendicularly to the respective axis, i.e. parallel to all planes which are
perpendicular to that axis. The corresponding vibration pattern is frequently
referred to as a ‘tangential mode’. If there is only one non-zero subscript,
the propagation is parallel to one of the coordinate axes, i.e. parallel to one
of the room edges. Then we are speaking of an ‘axial mode’. In Fig. 3.3, for
the analogous two-dimensional case, two combinations of plane waves are
shown which correspond to two different eigenfunctions.

We can get an illustrative survey on the arrangement, the types and the
number of the eigenvalues by the following geometrical representation. We

Figure 3.3 Plane wavefronts creating standing waves in a rectangular room:
(a) nx:ny = 1:1; (b) nx:ny = 3:2.



The sound field in a closed space 69

Figure 3.4 Eigenvalue lattice in the k-space for a rectangular room. The arrow
pointing from the origin to an eigenvalue point indicates the direction of one of
the eight plane waves which the corresponding mode consists of; its length is
prortional to the eigenvalue.

interpret kx, ky and kz as cartesian coordinates in a k-space. Each of the
allowed values of kx, given by eqn (3.14a), corresponds to a plane perpen-
dicular to the kx-axis. The same statement holds for the values of ky and kz,
given by eqns (3.14b) and (3.14c). These three equations therefore repres-
ent three sets of equidistant, mutually orthogonal planes in the k-space.
Since for one eigenvalue these equations have to be satisfied simultan-
eously, each intersection of three mutually orthogonal planes corresponds to
a certain eigenvalue in our representation. These intersections in their total-
ity form a rectangular point lattice in the first octant of our k-space (see
Fig. 3.4). (Negative values obviously do not yield new eigenvalues, since
eqn (3.15) is not sensitive to the signs of the subscripts!) The lattice points
corresponding to tangential and to axial modes are situated on the coordin-
ate planes and on the axes, respectively. The straight line connecting the
origin of the coordinate system to a certain lattice point has – according to
eqn (3.19) – the same direction as one of the plane waves of which the
associated mode is made up (see eqn (3.18)).

This representation allows a simple estimation of the number of
eigenfrequencies which are located between the frequency 0 and some other
given frequency. Considered geometrically, eqn (3.12) represents a spher-
ical surface in the k-space with radius k, enclosing a ‘volume’ 4πk3/3. Of
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this volume, however, only the portion situated in the first octant is of
interest, i.e. the volume πk3/6. On the other hand, the distances between
one certain lattice point and its nearest neighbours in the three coordinate
directions are π /Lx, π /Ly and π /Lz. The k-‘volume’ per lattice point is there-
fore π3/LxLyLz = π3/V, where V is the real geometrical volume of the room
under consideration. Now we are ready to write down the number of lat-
tice points inside the first octant up to radius k, which is equivalent to the
number of eigenfrequencies from 0 to an upper limit f = kc/2π:
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The average density of eigenfrequencies on the frequency axis, i.e. the number
of eigenfrequencies per Hz at the frequency f, is
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Strictly speaking, in the course of the derivation of the above formulae, we
have made an error inasmuch as we have regarded the lattice points on the
coordinate planes only as halves and those on the axes only as quarters, since
we have restricted our consideration strictly to the first octant, although the
points on the coordinate planes and the axes represent full eigenvalues.
Correcting this yields, instead of eqn (3.20), the more exact formula
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In this expression S is the area of all walls 2(LxLy + LxLz + LyLz) and
L = 4(Lx + Ly + Lz) the sum of all edge lengths occurring in the rectangular
room.

It can be shown that in the limiting case f → ∞ eqn (3.20) is valid not
only for rectangular rooms but also for rooms of arbitrary shape. This is
not too surprising since any enclosure can be conceived as being composed
of many (or even infinitely many) rectangular rooms. For each of them eqn
(3.20) yields the number Ni of eigenfrequencies. Since this equation is linear
in V, the total number of eigenfrequencies is just the sum of all Ni.

We bring this section to a close by applying our approximate formulae
(3.20) and (3.21) to two simple examples. The volume of the rectangular
room for which we have calculated the first eigenfrequencies in Table 3.1 is
59.7 m3. For an upper frequency limit of 116 Hz, eqn (3.20) indicates a
total number of eigenfrequencies of 10 as compared with the 20 we have
listed in the table. Using the more accurate formula (3.20a) we obtain
exactly 20 eigenfrequencies. That means that we must not neglect the
corrections due to tangential and axial modes when dealing with such small
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rooms at low frequencies. Now we consider a rectangular room with di-
mensions 50 m × 24 m × 14 m whose volume is 16 800 m3. (This might be
a large concert hall, for instance.) In the frequency range from 0 to 10 000 Hz
there are, according to eqn (3.20), about 1.8 × 109 eigenvalues. At 1000 Hz
the number of eigenfrequencies per hertz is about 5400, thus the average
distance of two eigenfrequencies on the frequency axis is less than 0.0002 Hz.
These figures underline the enormous volume of numerical calculation which
would be required to evaluate accurately the sound field in a room of even
the simplest geometry.

3.3 Non-rigid walls

In this section we are still dealing with rectangular rooms. But now we
assume that the walls are not completely rigid, but allow the normal com-
ponents of particle velocity to have non-vanishing values. Therefore we
have to replace the boundary condition (3.11a) by the more general condi-
tions of eqn (3.2b). For the walls perpendicular to the x-axis of our coordin-
ate system we therefore require
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The specific impedance ζx of the x-walls is assumed to be constant; the
same holds for the analogous boundary conditions concerning the walls
perpendicular to the y-axis and the z-axis, respectively. Thus each pair of
walls has uniform acoustical properties. The frequency contained in k and
in ζ is considered as constant, and so we expect the resulting eigenfunctions
to be mutually orthogonal.

We have tacitly assumed that the solution of the wave equation – as in
the preceding section – can be split into three factors p1, p2 and p3, each of
which depends on one spatial coordinate only.

For the present purpose it is more useful to write the general solution for
p1 in the complex form:

p1(x) = C1 exp (−ikxx) + D1 exp (ikxx) (3.23)

which, however, is completely equivalent to eqn (3.13). By inserting p1 into
the boundary conditions (3.22) we obtain two linear and homogeneous
equations for the constants C1 and D1:

C1(k + kxζx) + D1(k − kxζx) = 0

C1(k − kxζx) exp (−ikxLx) + D1(k + kxζx) exp (ikxLx) = 0 (3.24)
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which have a non-vanishing solution only if the determinant of their coeffi-
cient is zero. This leads to the following equation, from which the allowed
values of kx can be determined:
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which is equivalent to
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with
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Since the specific wall impedance is usually complex, ζx = ξx + iηx, we must
also expect complex values for the solution kx:

kx = k′x + ik″x

which is to be compared with eqn (3.9).
Once the allowed values of kx have been determined, the ratio of the two

constants C1 and D1 can be evaluated from eqns (3.24); for instance, from
the first of them
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the latter equality resulting from eqn (3.25). Thus the x-dependent factor of
the eigenfunction reads
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The complete eigenfunction is made up of three such factors.
We do not pursue a thorough discussion of eqn (3.25) or (3.25a) and its

solutions here, which can be found elsewhere. (In fact, graphical solutions
to eqn (3.25a) obtained by conformal mapping are known as Morse’s charts
in the literature.4) Here we restrict ourselves to two special cases which
make the contrast with a rigid wall sufficiently evident. In the following we
suppose | ζ | >> 1.
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First let the wall impedance be purely imaginary, i.e. ξx = 0. At the walls,
therefore, no energy loss will occur, since the absolute value of the reflec-
tion coefficient is 1 (see eqn (2.7)). The right-hand terms of eqns (3.25a)
are real in this case, and therefore the same is true for the allowed values of
u and kx, as was the case for rigid walls. A closer investigation of eqn
(3.25a) shows that kx is lower or higher than nxπ /Lx  (see eqn (3.14a))
depending on whether ηx  is positive, indicating that the wall has mass
character, or negative which means that the wall is compliant. The differ-
ence becomes smaller with increasing nx. If the allowed values of kx are
denoted by   kxnx

, the eigenvalues of the original differential equation are
given as earlier by

    
k k k kn n n xn yn znx y z x y z

= + + (   ) /2 2 2 1 2 (3.27)

From this relation it can be concluded that for missing energy losses at the
wall, i.e. for purely imaginary wall impedances, all eigenvalues are only
shifted by a certain amount.

As a second case we consider walls with very large real impedances.
From eqns (3.25) we obtain
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Since we have supposed ξx >> 1, we conclude k″x << k′x, and so we can safely
replace kx by k′x on the right-hand side. Then exp (ik′xLx) ≈ t1, the allowed
values of k′x are nearly the same as those of kx from eqn (3.14a). Further-
more, it follows from eqn (3.25b) that

    
exp ( )      − ′′ ≈ − ′′ ≈ −
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Analogous approximate formulae are obtained for the other coordinates.
The quantities k′ are, by the way, called ‘phase constants’.

Now we put the calculated values of kx, ky and kz into eqn (3.27) and
obtain for the eigenvalues
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where
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If we finally insert the approximate values from eqn (3.28) into our expres-
sion for 
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, we get
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In Fig. 3.5 the absolute value of the x-dependent factor of a certain
eigenfunction is represented for three cases: for rigid walls (ζx = ∞), for
mass-loaded walls with no energy loss (ξx = 0, ηx > 0), and for walls with
purely real impedances. In the second case, the nodes are simply shifted

Figure 3.5 One-dimensional normal mode, pressure distribution for nx = 4:
(a) ζ = ∞; (b) ζ = i; (c) ζ = 2.
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together by a certain amount, but the shape of the standing wave remains
unaltered. On the contrary, in the third case of lossy walls, there are no
longer exact nodes and the pressure amplitude is different from zero at all
points. This can easily be understood by keeping in mind that the walls
dissipate energy, which must be supplied by waves travelling towards the
walls, thus a pure standing wave is not possible. This situation is compar-
able to a standing wave in front of a single plane with a reflection factor
less than unity as shown in Fig. 2.3.

3.4 Steady state sound field

In Section 3.1 we saw that the steady state acoustical behaviour of a room,
when it is excited by a sinusoidal signal with angular frequency ω, is de-
scribed by a series of the form

    
p

A

n

n

n n n
ω ω ω δ ω

=
− −∑ 

    2 2 2i
(3.30)

where we are assuming δn << ωn as before. By comparing this with our
earlier eqn (3.10) we learn that the coefficients An are functions of the
source position, of the receiving position, and of the angular frequency ω. If
both points are considered as fixed, eqn (3.30) is the transfer function of
the room between both points. (If pω is to represent a true transfer function,
certain relationships between the eigenvalues must be met, which we shall
not discuss here.)

Since we have supposed that the constants δn are small compared with
the corresponding ωn, the absolute value of one series term changes so
rapidly in the vicinity of ω = ωn if the frequency is altered that we can safely
neglect any frequency dependence except that of the denominator. Since it
is the term ω 2 − ω 2

n which is responsible for the strong frequency depend-
ence, ωn can be replaced by ω in the last term of the denominator without
any serious error. The absolute value of the nth series term then becomes

    

| |

[(   )   ] /

An

n nω ω ω δ2 2 2 2 2 1 24− +

and thus agrees with the amplitude–frequency characteristics of a reson-
ance system, according to eqn (2.29). Therefore the stationary sound pres-
sure in a room and at one single exciting frequency proves to be the combined
effect of numerous resonance systems with resonance (angular) frequencies
ωn and damping constants δn. The half-widths of the various resonance
curves are according to eqn (2.31):

    
( )   ( )   ∆ ∆f n n

n= =
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2π
ω δ

π
(3.31)
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In the next section it will be seen that the damping constants in normal
rooms lie mostly between 1 and 20 s−1. Therefore our earlier assumption
concerning the relative magnitude of the damping constants seems to be
justified. Furthermore, we see from this that the corresponding half-widths,
within which the various resonance terms assume their highest values, are
of the order of magnitude of 1 Hz.

This figure is to be compared with the average spacing of eigenfrequencies
on the frequency axis which is the reciprocal of dNf /df after eqn (3.21). If
the mean spacing of resonance frequencies is substantially larger than the
average half-width 〈δn〉/π we expect that most of the room resonances are
well separated, and each of them can be individually excited and detected.
In a tiled bathroom, for example, the resonances are usually weakly damped,
and thus one can often find one or several resonances by singing or hum-
ming. If, on the contrary, the average half-width of the resonances is much
larger than the average spacing of the eigenfrequencies, there will be strong
overlap of resonance peaks and the latter cannot be separated. Instead, at
any frequency several or many terms of the sum in eqn (3.30) will have
significant values, hence several or many normal modes will contribute to
the total sound pressure. According to M. Schroeder5,6 a limiting frequency
separating both cases can be defined by the requirement that on average
three eigenfrequencies fall into one resonance half-width, or, with eqn (3.21):

    
〈 〉∆f

c

Vf
n   = 3

4

3

2π

(The angle brackets indicate averages). Introducing the average damping
constant by eqn (3.31), the sound speed c = 340 m/s and solving for the
frequency yields the limiting frequency, the so-called ‘Schroeder frequency’:
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√ 〈 〉δ � (3.32)

In this expression, the so-called ‘reverberation time’ T = 6.91/〈δ 〉 has been
introduced. The room volume V has to be expressed in cubic metres.

For large halls the Schroeder frequency is typically about 20 or 30 Hz,
hence there is strong modal overlap in the whole frequency range of inter-
est, and there is no point in evaluating any eigenfrequencies. It is only in
small rooms that a part of the important frequency range lies below fS, and
in this range the acoustic properties are determined largely by the values
of individual eigenfrequencies. To calculate the expected number     NfS

of
eigenfrequencies in the range from zero to fS, eqn (3.32) is inserted into
eqn (3.20) with the result:

      
N

T

V
fS

  ≈ 900
3

� (3.33)
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Thus, in a classroom with a volume of 200 m3 and a reverberation time of
1 s, about 60–70 eigenfrequencies dominate the acoustical behaviour be-
low the Schroeder frequency which is about 140 Hz. This example illus-
trates the somewhat surprising fact that the acoustics of small rooms are in
a way more complicated than those of large ones.

It should be noted that eqn (3.32) separates not only two frequency
ranges of different modal structure but also large rooms from small ones.
By solving for V, one gets a criterion for ‘acoustically large rooms’:

V > VS with
    
V

f
TS   ≈







2000

2

(3.32a)

(f in Hz, T in seconds). After the previous discussion it is not surprising that
this limit depends on frequency.

For the rest of this section we restrict our discussion to the frequency
range above the Schroeder limit, f > fS. Hence, if the room under considera-
tion is excited with a pure tone its steady state response is made up by
contributions of several or even many normal modes with randomly dis-
tributed phases. The situation may be elucidated by the vector diagram in
Fig. 3.6. Each numbered vector or arrow represents the contribution of one
term in eqn (3.30) (nine significant terms in this example). The resulting
sound pressure is obtained as the vector sum of all components. For a
different frequency or at a different point in the room, this diagram has the
same general character, but it looks quite different in detail, provided that
the change in frequency or location is sufficiently great.

Since the different components (the different series terms) can be consid-
ered as mutually independent, we can apply to the real part as well as to the
imaginary part of the resulting sound pressure pω the central limit theorem
of probability theory, according to which both quantities are random vari-
ables obeying nearly a Gaussian distribution. This statement implies that
the squared absolute value of the sound pressure p, divided by its frequency

Figure 3.6 Vector diagram of the components of the steady state sound pressure
in a room and their resultant for sinusoidal excitation (in most practical cases the
number of components is much larger).



78 Room Acoustics

(or space) average, y = | p |2/〈| p |2〉, which is proportional to the energy dens-
ity, is distributed according to an exponential law or, more precisely, the
probability of finding this quantity between y and y + dy is given by

P(y) dy = e−y dy (3.34)

Its mean value and also its variance 〈y2〉 − 〈y〉2 is 1, as is easily checked.
The probability that a particular value of y exceeds a given limit y0 is

      

P y y P y y
y

y
i d e(   )  ( )   > = =

∞

−
0

0

0� (3.34a)

It is very remarkable that the distribution of the energy density is com-
pletely independent of the type of the room, i.e. on its volume, its shape or
its acoustical qualities.

Figure 3.7a presents a typical ‘space curve’, i.e. the sound pressure level
recorded with a microphone along a straight line in a room while the
driving frequency is kept constant. Such curves express the space depend-
ence of eqn (3.30). Their counterpart are ‘frequency curves’, i.e. representa-
tions of the sound pressure level observed at a fixed microphone position
by slowly varying the excitation frequency. They are based upon the fre-
quency dependence of eqn (3.30). A section of such a frequency curve is
shown in Fig. 3.7b. Recorded at another microphone position or in another
room it would look quite different in detail; its general appearance, how-
ever, would be similar to the shown one. A similar statement holds for
space curves. (At this point it should be mentioned that for recording

Figure 3.7 Steady state sound pressure: (a) measured along a straight line at
constant frequency (‘space curve’); (b) measured at a fixed position with slowly
varying driving frequency (‘frequency curve’).
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correct space or frequency curves the microphone must not be too close to
the exciting loudspeaker.)

Both curves in Fig. 3.7 have a similar general appearance: they are highly
irregular with deep valleys. A maximum of the pressure level occurs if in
Fig. 3.6 many or all arrows happen to point in about the same direction,
indicating similar phases of most contributions. Similarly, a minimum
appears if these contributions more or less mutually cancel. Therefore, the
maxima of frequency curves are not related to particular room resonances
or eigenfrequencies but are the result of accidental phase coincidences. The
general similarity of space and frequency curves is not too surprising: both
sample the same distribution of squared sound pressure amplitudes, namely
that given by eqn (3.34). But since they do it in a different way, there are
indeed differences which can be demonstrated by their autocorrelation func-
tions. As before, we consider y = | p |2/〈| p |2〉 as the significant variable. Thus,
in contrast to Section 1.4, the ‘signals’ to which the autocorrelation func-
tions refer are y(x) and y(f ), respectively, with x denoting the coordinate
along the straight line where the pressure level is recorded. For space curves
in rooms with uniform distribution of the directions of sound propagation,
the autocorrelation function reads:
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while the autocorrelation function of frequency curves is given by7
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These autocorrelation functions are also useful for deriving expressions
for the average distance of maxima. According to a famous formula by
S.O. Rice8, the average number of maxima per second of a random signal
y(t) with normally distributed values of y is

    

1

2
4 2 1 2

π
[ ( )/ ( )]( ) ( ) /−Φ Φt t

where the numbers in brackets indicate the order of differentiations. By
replacing the time t with the variables ∆x and ∆f, respectively, and per-
forming the required differentiations we obtain the average distance of
adjacent maxima of space curves

〈∆xmax〉 ≈ 0.79 λ (3.36a)
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while the mean spacing of frequency curve maxima is
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where again T denotes the reverberation time, as in eqn (3.32).
A quantity which is especially important to the performance of sound

reinforcement systems in rooms is the absolute maximum of a frequency
curve within a given frequency bandwidth B. In order to calculate this we
represent the frequency curve by N equidistant samples provided they are
sufficiently close. Then we define the absolute maximum ymax by requiring
that this value be exceeded by just one sample, i.e.

    
P y y

N
i(   )  max> =

1

or, by employing eqn (3.34a):

ymax = lnN

The corresponding level difference between the maximum and the average
of the energetic frequency curve is

∆Lmax = 10 log10(lnN) = 4.34 ln(lnN) dB

Because of the double logarithm ∆Lmax depends only weakly on N, i.e. its
value is not critical. A fair representation of the frequency curve is certainly
achieved if we take four samples per 〈∆fmax〉. This leads to

    
N

B

f
BT    

max

= ≈4
〈 〉∆

Hence, the final expression for the maximum level in a frequency curve
reads

∆Lmax = 4.34 ln[ln(BT)] dB (3.37)

This interesting formula is due to M. Schroeder9 who derived it in a some-
what different manner. As an example, let us consider a room with a rever-
beration time of 2 s. According to eqn (3.37), the absolute maximum of its
frequency curve in the range from 0 to 10 kHz is about 10 dB above its
energetic average.

If the driving frequency is slowly varied not only does the amplitude of
the sound pressure at a fixed point change in an irregular manner but so
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Figure 3.8 (a) Magnitude and (b) phase of a room transfer function.

does its phase. However, a monotonic change in phase with respect to the
driving signal is superimposed on these quasi-statistical fluctuations. The
corresponding average phase shift per hertz is given by10
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ψ
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n

    .= ≈
π
δ

0 455 (3.38)

Figure 3.8 shows in its upper part an amplitude–frequency curve. It is
similar to that shown in Fig. 3.7b with the difference that the plotted quan-
tity is not the sound pressure level but the absolute value of the sound
pressure. The lower part plots the corresponding phase variation obtained
after subtracting the monotonic change according to eqn (3.38). Since this
figure represents the transfer function between two points within a room,
the phase spectrum of any signal which is transmitted in it will be randomized
by transmission. This can be demonstrated in the following way. A loud-
speaker placed in a reverberant room is alternatively fed with two signals
which have equal amplitude spectra, but different phase spectra, e.g. a
sequence of rectangular impulses, and by a maximum length sequence (see
Section 8.2) made up of rectangular impulses of the same length as those in
the first sequence (see Fig. 3.9). If the listener is close to the loudspeaker he
can clearly hear that both signals sound quite different provided the repeti-
tion rate 1/T is not too high. However, when he slowly steps into the room
the difference gradually fades out, and at a certain distance the signals have
become indistinguishable.

We close this section by emphasising again that the general properties of
room transfer functions, especially the distribution of its absolute values
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Figure 3.9 Two periodic signals with equal amplitude spectrum but different
phase spectra.

and thus the depth of its irregularities, the sequence of maxima and the
phase change associated with it, do not depend in a specific way on the
room or on the point of observation. In particular, it is impossible to base
a criterion of the acoustic quality on these quantities. This is in complete
contrast to what has been expected in the past from an examination of
frequency curves. From experience gained in the use of transmission lines,
amplifiers and loudspeakers, etc., one had supposed originally that a room
would be better acoustically if it had a smooth frequency curve. That this is
not so is due to several reasons. First, speech and music exhibit such rapid
variations in signal character that a large room does not reach steady state
conditions when excited by them except perhaps during very slow musical
passages. Furthermore, more recent investigations have shown that our
hearing organ is unable to perceive fluctuations of the spectrum of a signal
with respect to frequency if these irregularities are spaced closely enough
on the frequency axis (see Section 7.3).

3.5 Decaying modes, reverberation

If a room is excited not by a stationary sinusoidal signal as in the preceding
sections but instead by a very short sound impulse emitted at time t = 0, we
obtain, in the limit of vanishing pulse duration, an impulse response g(t) at
some receiving point of the room. According to the discussion in Section 1.4,
this is the Fourier transform of the transfer function. Hence

g(t) =
  
�

−∞

+∞

pω exp (iω t) dω
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Generally the evaluation of this Fourier integral, applied to pω after
eqn (3.9) or (3.30), is rather complicated since both ωn and δn depend on
the driving frequency ω. At any rate the solution has the form
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It is composed of sinusoidal oscillations with different frequencies, each
dying out with its own particular damping constant. This is quite plausible
since each term of eqn (3.30) corresponds to a resonator whose reaction to
an excitation impulse is a damped oscillation. If the wall losses in the room
are not too large, the frequencies ω′n and damping constants δ ′n differ only
slightly from those occurring in eqn (3.30). As is seen from the more exact
representation (3.10), the coefficients A′n contain implicitly the location of
both the source and the receiving point.

If the room is excited not by an impulse but by a stationary signal s(t)
which is switched off at t = 0, the resulting room response h(t) is, according
to eqn (1.44),

h(t) =
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The above expression for h(t) can be written more simply as

    
h t c t t tn

n
n n n( )  exp ( ) cos (   )    = − ′ ′ − >∑ δ ω φ for   0 (3.40)

with

cn = An′√(an
2 + b2

n)

It is evident that only such modes can contribute to the general decay process
whose eigenfrequencies are not too remote from the frequencies which are
contained in the spectrum of the driving signal. If the latter is a sinusoidal
tone switched off at some time t = 0, then only such components contribute
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noticeably to h(t), the frequencies ω′n of which are separated from the driv-
ing frequency ω by not more than a half-width, i.e. by about δ ′n.

The decay process described by eqn (3.40) is called the ‘reverberation’ of
the room. It is one of the most important and obvious acoustical phenom-
ena of a room, familiar also to the layman.

An expression proportional to the energy density is obtained by squaring
h(t):

    
w t h t c c t t tn m

mn
n m n n m m( ) ~ [ ( )]   exp [ (   ) ] cos (   ) cos (   )2 = − ′ + ′ ′ − ′ −∑∑ δ δ ω φ ω φ

(3.41)

This expression can be considerably simplified by averaging it with respect
to time. Since the damping constants are small compared with the
eigenfrequencies, the exponential terms vary slowly and we are permitted
to average the cosine products only. The products with n ≠ m will cancel on
the average, whereas each term n = m yields a value 

  
1
2
. Thus we obtain

    
Z  exp ( )= − ′∑ c tn n
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where all constants of no importance have been omitted.
Now we imagine that the sum is rearranged according to increasing damp-

ing constants δ ′n. Additionally, the sum is supposed to consist of many
significant terms. Then we can replace it by an integral by introducing a
damping density H(δ). This is done by denoting the sum of all c2

n with
damping constants between δ and δ + dδ by H(δ) dδ, and by normalising
H(δ) so as to have

    
�

0

∞

H(δ) dδ = 1

Then the integral envisaged becomes simply
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2H tδ δ δd (3.42)

Just as with the coefficient cn, the damping distribution H(δ) depends on
the sound signal, on the location of the sound source, and on the point of
observation. From this representation we can derive some interesting gen-
eral properties of reverberation.

Usually reverberation measurements are based on the sound pressure
level of the decaying sound field:
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while the second derivative of the decay level is
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(Each overdot in these formulae means one differentiation with respect
to time.) By caculating the derivatives of q from eqn (3.42) it is easy to
show that the second derivative of the decay level Lr is nowhere negative
which means that the decay curves are curved upwards. As a limiting case,
they can be a straight line. The latter occurs if all damping constants in-
volved in the decay process are equal, i.e. if the distribution H(δ) is a Dirac
function.

For t = 0 the curve has its steepest part, its initial slope as obtained from
eqn (3.43a)
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is determined by the mean value of the distribution H(δ). Furthermore,
eqn (3.43b) leads to

    ( )   . (   )Gr t = = −0
217 37 〈 〉 〈 〉2δ δ (3.44b)

This means, the second derivative of the level which is roughly the initial
curvature of the decay curve is proportional to the variance of the damping
distribution H(δ).

In Fig. 3.10 are shown some examples of distributions of damping con-
stants together with the corresponding logarithmic reverberation curves.
The distributions are normalised so that their mean values (and hence the
initial slopes of the corresponding reverberation curves) agree with each
other. Only when all the damping constants are equal (case d) are straight
curves are obtained.

Very often the damping constants of the modes are very close to each other,
and accordingly the decay curves are straight lines apart from some random
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Figure 3.10 Various distributions of damping constants and corresponding
reverberation curves.

or quasi-random fluctuations as shown in Fig. 3.11. (These irregularities
are due to beats between the decaying modes.) Then all decay constants can
be replaced without much error by their average 〈δ〉.

It is usual in room acoustics to characterise the duration of sound decay
not by damping constants but by the ‘reverberation time’ or ‘decay time’ T,
introduced by W.C. Sabine. It is defined as the time interval in which the
decay level drops down by 60 dB. From

−60 = 10 log10[exp (−2〈δ 〉T]

it follows that the reverberation time

    
T   

.
=

6 91

〈 〉δ
(3.45)

a relation which was already used in Section 3.4.
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Figure 3.11 Definition of the reverberation time.

Typical values of reverberation times run from about 0.3 s (living rooms)
up to 10 s (large churches, reverberation chambers). Most large halls have
reverberation times between 0.7 and 2 s. Thus the average damping con-
stants encountered in practice are in the range 1 to 20 s−1.

The previous statements on the general shape of logarithmic decay curves,
in particular on their curvature, are not valid for coupled rooms, i.e. for
virtually separate rooms, connected by relatively small coupling apertures
only or by partially transparent walls. That different conditions are to be
expected can be understood in the following way.

Let us consider two partial rooms not too different from each other,
which are coupled to each other and whose eigenfrequencies, if they
were not coupled, would be ω1, ω2, . . . , ωn and ω′1, ω′2, . . . , ω ′n, . . . ,
respectively. For each eigenfrequency of the one room, we can find an
eigenfrequency of the other room, having nearly the same value. By intro-
ducing the coupling element these pairs of eigenfrequencies – as with any
coupled system – are pushed apart by a small amount ∆ω, where ∆ω is of
the same order of magnitude for all pairs of eigenfrequencies and depends
on the amount of coupling. In the decay process, according to eqn (3.40),
beats will occur with a relatively low beat frequency ∆ω/2 which cannot be
eliminated by short-time averaging as applied in the derivation of eqn (3.41a),
and the shape of the reverberation curve may exhibit more complicated
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features than described above. Only if the coupling is so strong that the
frequency shifts, and hence the beat frequencies become comparable with
the eigenfrequencies themselves, will a short-time averaging process remove
everything except the exponential factors, and we can apply eqn (3.41a).
For that case, however, the coupling aperture has to be so large that we can
speak of one single room and its splitting up into partial rooms would be
artificial. In Chapter 5 we shall discuss the properties of coupled rooms
from a statistical point of view. For the exact wave theoretical treatment of
coupled rooms, the reader is referred to the literature.10
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4 Geometrical room acoustics

The discussions of the preceding chapter have clearly shown that it is
not very promising to apply the methods of wave theory in order to find
answers to questions of practical interest, especially if the room under con-
sideration is large and somewhat irregular in shape. In such cases even
the calculation of one single eigenvalue and the associated normal mode
is quite difficult. Moreover, in order to obtain a survey of the sound fields
which are to be expected for different types of excitation it would be neces-
sary to calculate not one but a very large number of modes. On the other
hand, such a computation, supposing it were at all practicable, would yield
far more detailed information than would be required and meaningful for
the judgement of the acoustical properties of the room.

We arrive at a greatly simplified way of description – just as in geomet-
rical optics – by employing the limiting case of vanishingly small wavelengths,
i.e. the limiting case of very high frequencies. This assumption is permitted
if the dimensions of the room and its walls are large compared with the
wavelength of sound. This condition is frequently met in room acoustics; at
a medium frequency of 1000 Hz, corresponding to a wavelength of 34 cm,
the linear dimensions of the walls and the ceiling, and also the distances
covered by the sound waves, are usually larger than the wavelength by
orders of magnitude. Even if the reflection of sound from a balcony face is
to be discussed, for instance, a geometrical description is applicable, at least
qualitatively.

In geometrical room acoustics, the concept of a wave is replaced by the
concept of a sound ray. The latter is an idealisation just as much as the
plane wave. As in geometrical optics, we mean by a sound ray a small
portion of a spherical wave with vanishing aperture which originates from
a certain point. It has a well-defined direction of propagation and is subject
to the same laws of propagation as a light ray, apart from the different
propagation velocity. Thus, according to the above definition, the total
energy conveyed by a ray remains constant provided the medium itself does
not cause any energy losses. However, the intensity within a diverging
bundle of rays falls as 1/r2, as in every spherical wave, where r denotes the
distance from its origin. Another fact of particular importance for room



90 Room Acoustics

acoustics is the law of reflection. In contrast, the transition to another
medium, and the refraction accompanying it, does not occur in room acous-
tics, neither does the curvature of rays in an inhomogeneous medium. But
the finite velocity of propagation must be considered in many cases, since it
is responsible for many important effects such as reverberation, echoes and
so on.

Diffraction phenomena are neglected in geometrical room acoustics, since
propagation in straight lines is its main postulate. Likewise, interference is
not considered, i.e. if several sound field components are superimposed
their mutual phase relations are not taken into account; instead, simply
their energy densities or their intensities are added. This simplified proced-
ure is permissible if the different components are ‘incoherent’ with respect
to each other, which is usually the case if the components have wide fre-
quency spectra. Criteria for characterising the coherence of sound signals
will be discussed in Chapters 7 and 8.

It is self-evident that geometrical room acoustics can reflect only a partial
aspect of the acoustical phenomena occurring in a room. This aspect is,
however, of great importance – especially of practical importance – and
therefore we must deal with it in some detail.

4.1 Enclosures with plane walls, image sources

If a sound ray strikes a solid surface it is usually reflected from it. This
process takes place according to the reflection law well known in optics. It
states that the ray during reflection remains in the plane defined by the
incident ray and the normal to the surface, and that the angle between the
incident ray and reflected ray is halved by the normal to the wall. In vector
notation, this law which is illustrated in Fig. 4.1 reads:

u′′′′′ = u − 2(un) · n (4.1)

Figure 4.1 Illustration of vectors in eqn (4.1).
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Figure 4.2 Reflection of a sound ray from a corner.

Figure 4.3 Construction of an image source.

Here u and u′′′′′ are unit vectors pointing into the direction of the incident
and the reflected sound ray, respectively, and n is the normal unit vector at
the point where the arriving ray intersects the surface.

One simple consequence of this law is that any sound ray which under-
goes a double reflection in an edge (corner) formed by two (three) perpen-
dicular surfaces will travel back in the same direction as shown in Fig. 4.2a,
no matter from which direction the incident ray arrives. If the angle of the
edge deviates from a right angle by δ, the direction of the reflected ray will
differ by 2δ from that of the incident ray (Fig. 4.2b).

In this and the next two sections the law of specular reflection will be
applied to enclosures the boundaries of which are composed of plane and
uniform walls. In this case one can benefit from the notion of image sources
which greatly facilitates the construction of sound paths within the enclos-
ure. This is explained in Fig. 4.3. Suppose there is a point source A in front
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of a plane wall or wall section. Then each ray reflected from this wall can
be thought of as originating from a virtual sound source A′ which is located
behind the wall, on the line perpendicular to the wall, and at the same
distance from it as the original source A. Without the image source, the
reflection path connecting the sound source A with a given point B could
only be found by trial and error.

Once we have constructed the image source A′ associated with a given
original source A, we can disregard the wall altogether, the effect of which
is now replaced by that of the image source. Of course, we must assume
that the image emits exactly the same sound signal as the original source
and that its directional characteristics are symmetrical to those of A. If the
extension of the reflecting wall is finite, then we must restrict the directions
of emission of A′ accordingly or, put in a different way, for certain posi-
tions of the observation point B the image source may become ‘invisible’.
This is the case if the line connecting B with the image source does not
intersect the actual wall.

Usually not all the energy striking a wall is reflected from it; part of the
energy is absorbed by the wall (or it is transmitted to the other side, which
amounts to the same thing as far as the reflected fraction is concerned). The
fraction of sound energy (or intensity) which is not reflected is character-
ised by the absorption coefficient α of the wall, which has been defined in
Section 2.2 as the ratio of the non-reflected to the incident intensity. It
depends generally, as we have seen, on the angle of incidence and, of course,
on the frequencies which are contained in the incident sound. Thus the
reflected ray generally has a different power spectrum and a lower total
intensity than the incident one. Using the picture of image sources, these
circumstances can be taken into account by modifying the spectrum and
the directional distribution of the sound emitted by A′. With such refine-
ments, however, the usefulness of the concept of image sources is degraded
considerably. So usually a mean value only of the absorption coefficient
is accounted for by reducing the intensity of the reflected ray by a fraction
1 − α of the primary intensity.

Suppose we follow a sound ray originating from a sound source on its
way through a closed room. Then we find that it is reflected not once but
many times from the walls, the ceiling and perhaps also from the floor. This
succession of reflections continues until the ray arrives at a perfectly
absorbent surface. But even if there is no perfectly absorbent area in our
enclosure the energy carried by the ray will become vanishingly small after
some time, because with each reflection a certain part of it is lost by
absorption.

If the room is bounded by plane surfaces, a more complicated sound path
can be constructed by extending the concept of image sources. This leads to
images sources of higher order. They are obtained by applying the mirror-
ing process to previously found images as is shown in Fig. 4.4. Suppose a
sound ray emitted by the original source A hits a wall, from then on it will
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Figure 4.4 Image sources of first and second order.

proceed as if it were originating from the first-order image A′ until it reaches
a second wall. The next section of the ray path is found by means of the
second-order image A″ which is the mirror image of A′ with respect to that
second wall. We continue in this way, obtaining more and more image
sources as the total path length of the ray increases.

For a given enclosure and sound source position, the image sources can
be constructed without referring to a particular sound path. Suppose the
enclosure is made up of N-plane walls. Each wall is associated with one
image of the original sound source. Now each of these image sources of
first order is mirrored by each wall, which leads to N(N − 1) new images
which are of second order. By repeating this procedure again and again a
rapidly growing number of images is generated with increasing distances
from the original source. The number of images of order i is N(N − 1) i−1 for
i ≥ 1; the total number of images of order up to i0 is obtained by adding all
these expressions:

N(i0) =
    
N

N

N

i(   )   

  

− −
−

1 1

2

0

(4.2)

It is obvious that the number of image sources grows rapidly with increas-
ing i0. For enclosures with high symmetry (see Fig. 4.6, for instance) many
of the higher order images coincide. It shoud be noted, however, that each
image source has its own directivity since it ‘illuminates’ only a limited
solid angle, determined by the limited extension of the walls. Hence it may
well happen that a particular image source is ‘invisible’ or rather ‘inaudible’
from a given receiving location. This problem has been carefully discussed
by Borish.1 More will be said about this subject in Section 9.6.
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These complications are not encountered with enclosures of high regular-
ity, which in turn produce regular patterns of image sources. As a simple
example, which also may illustrate the usefulness of the image model, let us
consider a very flat room, the height of which is small compared with its
lateral dimensions. Since most points in this enclosure are far from the side
walls, the effect of the latter may be totally neglected. Then we arrive at a
space which is bounded by two parallel, infinite planes. We assume a sound
source A and an observation point B in the middle between both planes,
radiating constant power P uniformly in all directions. The corresponding
image sources (and image spaces) are depicted in Fig. 4.5. The source im-
ages form a simple pattern of equidistant points situated on a straight line,
and each of them is a valid one, i.e. it is ‘visible’ from any observation point
B. Its distance from an image of nth order is (r2 + n2h2)1/2, if r denotes the
horizontal distance of B from the original source A and h is the ‘height’ of
the room. If we furthermore assume, for the sake of simplicity, that both
planes have the same absorption coefficient α independent of the angle of
sound incidence, the total energy density in B is given by the following
expression:
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which can easily be evaluated with a programmable pocket calculator. A
graphical representation of this formula will be found in Section 9.4.

Another example is obtained by dropping the assumption of very large
lateral dimensions. Then we have to take the side walls into account, which
we assume to be perpendicular to the floor and the ceiling, and also to each

Figure 4.5 System of image sources of an infinite flat room: A is the original
sound source; A′, A″, etc., are image sources; B is the receiving point.



Geometrical room acoustics 95

Figure 4.6 Image sound sources of a rectangular room. The pattern continues in
an analogous manner in the direction perpendicular to the drawing plane.

other. The resulting enclosure is a rectangular room, as depicted in Fig. 3.1.
For this room shape certain image sources of the same order are comple-
mentary with respect to their directivity and coincide. The result is the
regular pattern of image rooms as shown in Fig. 4.6, each of them contain-
ing exactly one image source. So the four image rooms adjacent to the sides
of the original rectangle contain one first-order image each, whereas those
adjacent to its corners contain second-order images and so on. The lattice
depicted in Fig. 4.6 has to be completed in the third dimension, i.e. we must
imagine an infinite number of such patterns one upon the other at equal
distances, one of them containing the original room.

In both examples, all image sources are valid ones. This is because the
totality of image rooms, each of them containing one source image, fills the
whole space without leaving uncovered regions and without any overlap.
Enclosures of less regular shape would produce much more irregular pat-
terns of image sources, and their image spaces would overlap each other in
an almost unpredictable way. In these cases the validity or invalidity of
each image source with respect to a given receiving point must be carefully
examined.

When all image sources have been detected, the original room is no
longer needed. The sound signal received in a given point is then obtained
as the superposition of the contributions of all significant image sources



96 Room Acoustics

under the assumption that all sources including the original one simul-
taneously emit the same sound signal. Because of the different travelling
distances, the waves (or rays) originating from these sources arrive at the
receiving point with different delays and strengths as illustrated in Fig. 4.7.
To obtain the signal at the receiving point one has just to add the sound
pressures of all contributions. The strength of a particular contribution
must also include the absorptivity of the walls which are crossed by the
straight line connecting the image source with the receiving point.

If the absorption coefficients of all walls are frequency independent,
the received signal s′(t) is the superposition of infinitely many replicas of
the original signal, each of them with its particular strength An and delayed
by its particular travelling time tn:

s′(t) =
    

A s t tn n
n

(   )−∑

Accordingly, the impulse response of the room reads in our simplified
picture:

g(t) =
    

A t tn n
n

δ(   )−∑ (4.4)

In reality, an incident Dirac impulse is deformed when it is reflected from a
wall, i.e. the reflected signal is not the exact replica of the original impulse
but is transformed into a somewhat different signal r(t). This signal is by
definition the ‘reflection response’ of the surface, and its Fourier transform
is the reflection factor R as introduced in Section 2.1.

Figure 4.7 Longitudinal section of an auditorium with image sources: A = sound
source; A1 = first-order image sources; A2 = second-order image sources etc.
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Under certain conditions the addition of sound pressures can be replaced
by the addition of intensities. Suppose we have to add two sinusoidal sig-
nals of equal angular frequency ω with amplitudes S1 and S2 and delays t1

and t2:

p(t) = S1 cos [ω(t − t1)] + S2 cos [ω(t − t2)]

To obtain the resulting the intensity or energy density one has to square
this expression. This produces – apart from the squared first and second
term – a mixed term which describes the interference between both signals:

2S1S2 cos [ω(t − τ1)] cos [ω(t − τ2)] = S1S2{cos [ω(τ1 − τ2)]

+ cos [ω(2t − τ1 − τ2)]}

For signals the spectrum of which covers the wide frequency band typical
of many sounds the squared sound pressure can be averaged over ω. By
means of this operation the mixed term in the above expression vanishes
provided the frequency bandwidth of the signal is large compared with
| τ1 − τ2 |−1 while averaging the cos2 terms results in S1

2/2 and S2
2/2. Since the

energy density w is proportional to the squared sound pressure, the total
energy density is just the sum of both contributions:

w = w1 + w2

Sound signals with this property are called ‘incoherent’ or ‘mutually inco-
herent’. In deriving eqn (4.3) it was tacitly assumed that the contributions
of all image sources are mutually incoherent.

4.2 The temporal distribution of reflections

For the present discussion it is sufficient to assume frequency-independent
reflection factors for all walls. Hence the simplified impulse response as
expressed by eqn (4.4) will be considered in the following.

If we mark the arrival times of the various reflections by perpendicular
dashes over a horizontal time axis and choose the heights of the dashes
proportional to the relative strengths of reflections, i.e. to the coefficients
An, we obtain what is frequently called a ‘reflection diagram’ or ‘echogram’.
It contains all significant information on the temporal structure of the sound
field at a certain room point. In Fig. 4.8 a schematical reflection diagram is
plotted. After the direct sound, arriving at t = 0, the first strong reflections
occur at first sporadically, later their temporal density increases rapidly,
however; at the same time the reflections carry less and less energy. As we
shall see later in more detail, the role of the first isolated reflections with
respect to our subjective hearing impression is quite different from that of
the very numerous weak reflections arriving at later times, which merge
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Figure 4.8 Schematic reflection diagram. The abscissa is the delay time of a
reflection, and the ordinate is its level, both with respect to the direct sound
arriving at t = 0.

into what we perceive subjectively as reverberation. Thus we can consider
the reverberation of a room not only as the common effect of free decaying
vibrational modes, as we did in Chapter 3, but also as the sum total of all
reflections – except the very first ones.

A survey on the temporal structure of reflections and hence of the law of
reverberation in a rectangular room can easily be obtained by using the
system of image rooms and image sound sources (see Fig. 4.6). We suppose
for this purpose that at some time t = 0 all mirror sources generate impulses
of equal strengths. In the time interval from t to t + dt, all those reflections
will arrive in the centre of the original room which originate from image
sources whose distances to the centre are between ct and c(t + dt). These
sources are located in a spherical shell with radius ct. The thickness of this
shell (which is supposed to be very small as compared with ct) is c dt and its
volume is 4πc3t2 dt. In this shell volume, the volume V of an image room is
contained 4πc3t2 dt/V times; this figure is also the number of mirror sources
contained in the shell volume. Therefore the average temporal density of
the reflections arriving at time t is

    

d

d
rN

t

c t

V
  = 4

3 2

π (4.5)

The mean density of sound reflections increases according to a quadratic
law with respect to time.

It is interesting to note, by the way, that the above approach is the same
as we applied to estimate the mean density of eigenfrequencies in a rectan-
gular room (eqn (3.21)) with about the same result. In fact, the pattern of
mirror sources and the eigenfrequency lattice are closely related to each
other. Moreover, it can be shown that eqn (4.5) does not only apply to
rectangular rooms but to rooms with arbitrary shape as well.
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Each reflection – considered physically – corresponds to a narrow bundle
of rays originating from the respective image source in which the sound
intensity decreases proportionally as (ct)−2, i.e. as the square of the recip-
rocal distance covered by the rays. Furthermore, the rays are attenuated by
absorption in the medium and by incomplete reflections which correspond
in the picture to the crossing of image walls. The former effect can be taken
into account by the attenuation constant m as introduced in Section 1.2.
According to eqn (1.16a) the factor exp (mx/2) describes the decrement of
the pressure amplitude when a plane wave travels a distance x in a lossy
medium, hence its intensity is reduced by a factor exp (−mx) = exp (−mct).
Furthermore, the intensity of a ray bundle will be reduced by a factor 1 − α
whenever it crosses a wall of an image room; if this happens n-times per
second, the energy or intensity of the ray bundle after some time t will have
become smaller by (1 − α)nt = exp [nt ln(1 − α)]. Therefore, the reflections
arriving at time t at some observation point in the original room have an
average intensity

    

A

ct( )2
exp {[−mc + n ln(1 − α)]t}

A being a constant factor. Therefore the whole energy of all reflections at
the point of observation (the exact location of which is of minor import-
ance) as a function of time is

E(t) = E0 exp {[−mc + n ln(1 − α)]t} for t ≥ 0 (4.6)

Now we must calculate the average number of wall reflections or wall
crossings per second. For this purpose, as in Section 3.2, the dimensions of
the rectangular room are denoted by Lx, Ly, Lz. A sound ray whose angle
with respect to the x-axis is βx will cross nx mirror walls per second perpen-
dicular to the x-axis where (see Fig. 4.9)

nx(βx) =
    
 cos  

c

Lx
xβ (4.7)

Similar expressions hold for the average crossings of walls perpendicular to
the y-axis and the z-axis. Hence, the total number of wall crossings, i.e. of
reflections which a ray with given direction undergoes per second is

n(βx, βy, βz) = nx + ny + nz

with cos2βx + cos2βy + cos2βz = 1. This would mean that each sound ray
decays at its own decay rate.
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Figure 4.9 Wall crossings of a sound ray in a rectangular room and its
mirror images.

One might be tempted to average n(βx, βy, βz) over all directions in order
to arrive at a figure which is representative for the whole energy content of
the room. This is only permissible, however, if the sound rays and the
energy they transport change their direction once in a while.2 This will
never happen in a rectangular room with smooth walls. But enclosures of
more irregular shape or with diffusely reflecting walls (see Section 2.6) do
have the tendency to mix the directions of sound propagation. This tend-
ency is supported by sound diffraction by obstacles within the enclosure.
In the ideal case, such randomising effects could eventually result in what is
called a ‘diffuse sound field’ in which the propagation of sound is com-
pletely isotropic.

Under this condition eqn (4.7) may be averaged over all directions:
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The same average is found for ny and nz. Hence the total average of reflec-
tions per second is
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Here S is the total wall area of the original room. By inserting this result
into eqn (4.6) we arrive at a fairly general law of sound decay:

E(t) = E0 exp
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for t ≥ 0 (4.9)
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The reverberation time, i.e. the time in which the total energy falls to one
millionth of its initial value, is thus
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− −
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or, if we insert the numerical value of the sound velocity in air and express
the volume V in m3 and the wall area S in m2,

    
T

V

mV S
  .

  ln(   )
=

− −
0 163

4 1 α
(4.11)

In the preceding, we have derived by rather simple geometric considerations
the most important formula of room acoustics which relates the reverbera-
tion time, i.e. the most characteristic figure with respect to the acoustics of
a room, to its geometrical data and to the absorption coefficient of its
walls. We have assumed tacitly that the latter is the same for all wall
portions and that it does not depend on the angle at which a wall is struck
by the sound rays. In the next chapter we shall look more closely into the
laws of reverberation by applying somewhat more refined methods, but the
result will be essentially the same.

The exponential law of eqn (4.9) represents an approximate description
of the temporal change of the energy carried by the reflections, neglecting
many details which may be of great importance for the acoustics of a room.
In practical cases the actual decrease of reflected energy succeeding an
impulsive sound signal always exhibits greater or lesser pronounced
deviations from this ideal law. Sometimes such deviations may be heard
subjectively in a very unpleasant way and spoil the acoustical quality of a
room. So it may happen, for instance, that a reflection arriving at a relat-
ively large time delay carries far more energy than its contemporaries and
stands out of the general reverberation. This can occur when the sound rays
of which it is made up have undergone a reflection from a remote concave
portion of wall. Such an outstanding component is perceived as a distinct
echo and is particularly disturbing if the portion of wall which is respons-
ible is irradiated by a loudspeaker. Another unfavourable condition is that
of many reflections clustered together in a narrow time interval. Since our
hearing has a limited time resolution and therefore performs some sort of
short-time integration, this lack of uniformity may be audible and may
exhibit undesirable effects which are similar to a single reflection of excep-
tional strength.

Particularly disturbing are reflections which form a periodic or a nearly
periodic succession. This is true even if this periodicity is hidden in a great
number of reflections distributed irregularly over the time axis, since our
hearing is very sensitive to periodic repetitions of certain sound signals. For
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short periods, i.e. for repetition times of a few milliseconds, such periodic
components are perceived as a ‘colouration’ of the reverberation; then the
decay has a characteristic pitch and timbre. Hence speech or music in such
a room will have its spectra changed. If the periods are longer, if they
amount to 30, 50 or even 100 ms, the regular temporal structure itself
becomes audible. This case, which is frequently referred to as ‘flutter echo’,
occurs if sound is reflected repeatedly to and fro between parallel walls.
Flutter echoes can be observed quite distinctly in corridors or other longish
rooms where the end walls are rigid but the ceiling, floor and side walls are
absorbent. They can also occur in rooms the shapes of which are less
extreme, but then their audibility is mostly restricted to particular locations
of source and observer.

4.3 The directional distribution of reflections, diffusion

We shall now take into consideration the third property which character-
ises a reflection, namely the direction from which it reaches an observer. As
before, we shall not attribute to each single reflection its proper direction,
but we shall apply a summarising method, which commends itself not only
because of the great number of reflections making up the resulting sound
field in a room but also because we are usually not able to locate subject-
ively the directions from which reflected and hence delayed components
reach our ears. Nevertheless, whether the reflected components arrive uni-
formly from all directions or whether they all come from one single direc-
tion has considerable bearing on the acoustical properties of a room. The
directional distribution of sound is also important for certain measuring
techniques.

Consider a short time interval dt (in the vicinity of time t) on the time
axis of a reflection diagram or echogram. As before, let the origin of the
time axis be the moment at which the direct sound arrives. Furthermore,
define some polar angle ϑ and azimuth angle ϕ as the quantities which
characterise certain directions. Around a certain direction, imagine a ‘direc-
tional cone’ with a small aperture, i.e. solid angle dΩ. The total energy
contributed by reflections arriving in dt from the solid angle element dΩ is
denoted by

d3E = Et(ϕ, ϑ) dt dΩ (4.12)

Et(ϕ, ϑ) is the time-dependent directional distribution of the reflection
energy or reverberation energy.

If we integrate eqn (4.12) over all directions, we obtain the time distribu-
tion of the reflected sound energy discussed in the preceding section:

E(t) =
      
��Et( , ) ϕ ϑ dΩ (4.13)
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If we integrate, however, eqn (4.12) over all times from zero to infinity, we
obtain the steady state directional distribution:

I(ϕ, ϑ) =
      
�

0

∞

E tt( , )ϕ ϑ d (4.14)

This can be determined experimentally by exciting the room with a station-
ary sound signal and by measuring the sound components arriving from the
various directions by the use of a directional microphone. The result, how-
ever, is always modified to some extent by the limited directional resolution
of the microphone.

The difference between the time-dependent and the steady state direc-
tional distribution can be illustrated by invoking the system of image sound
sources shown in Fig 4.6. For the energy arriving at time t from the solid
angle element dΩ those image sources are responsible which are located in
the area common to the cone dΩ and to the circular belt (in the cross-section
shown) of width c dt and radius ct; the stationary energy incident from the
same solid angle element is due to all image sources in the whole cone.

If the directional distribution does not depend in any way on the angles ϕ
and ϑ, the stationary sound field is called ‘diffuse’. If in addition to this
condition Et(ϕ, ϑ) is independent of the angles ϕ and ϑ for all t, the decay-
ing sound field is also diffuse for all t.

In a certain sense the diffuse sound field is the counterpart of a plane
wave. Just as certain properties can be attributed to plane waves, so rela-
tionships describing the properties of diffuse sound can be established. Some
of these have already been encountered in Chapter 2. They are of particular
interest to the whole of room acoustics, since, although the sound field in a
concert hall or theatre is not completely diffuse, its directional structure
resembles much more that of a diffuse field than that of a plane wave. Or,
put in another way, the sound field in an actual room, which always con-
tains some irregularities in shape, can be approximated fairly well by a
sound field with uniform directional distribution on account of its great
complexity. In contrast to this, a single plane wave is hardly ever encoun-
tered in a real situation.

The directional distribution in a rectangular room can be discussed again
– at least qualitatively – by the use of Fig. 4.6. The cross-hatched region,
which of course must be imagined as continued into the third dimension,
has the volume c3t2 dt dΩ. If V again denotes the volume of the original
room, the region referred to contains on the average c3t2 dt dΩ /V image
sources, their number thus being independent of the direction. If there is no
absorption by the walls, the sound components reaching the centre of the
original room are not subject to any directionally dependent attenuation;
the time-dependent as well as the stationary directional distribution is there-
fore uniform.
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Figure 4.10 System of image rooms for a rectangular room, one side of which is
perfectly sound absorbing. The original room is cross-hatched.

Matters are not the same if the walls have an absorption coefficient
different from zero. In this case there are directions from which the strength
of arriving reflections is particularly reduced, since the mirror sources in
these directions are predominantly of higher order. It is only in the direc-
tions of the axes that the image sources of first order are received, i.e.
components which have undergone one reflection only from a wall. The
resulting sound field is therefore by no means diffuse. This means that the
averaging which we have performed to obtain eqn (4.8) is not, strictly
speaking, permissible in this form and ought to be replaced by some weighted
average which would yield a result different from eqn (4.9).

A somewhat extreme example of a room with non-diffuse conditions is
presented by a strictly rectangular room, whose walls are perfectly rigid
except for one which absorbs the incident sound energy completely. Its
behaviour with respect to the formation and distribution of reflections is
elucidated by the image room system depicted in Fig. 4.10, consisting of
only two ‘stores’ since the absorbing wall generates no images of the room
and the sound source. In the lateral directions, however (and perpendicular
to the plane of the figure), the system is extended infinitely.

We denote the distance between the absorbing wall and the wall opposite
to it by L and the elevation angle by ε, measured from the point of observa-
tion which may be located in the centre of the reflecting ceiling for the sake
of simplicity. The time-dependent directional distribution is then given by

    
Et( , )  ϕ ε =





const

0

for | ε | ≤ ε0

for | ε | > ε0

(4.15)



Geometrical room acoustics 105

where

ε0(t) = arcsin
  

L

ct
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t

L

c
  ≥

The range of elevation angle subtended by the image sources contracts
more and more with increasing time. With the presently used meaning of
the angle ε, the element of solid angle becomes cos ε dε dϕ; hence the integ-
ration indicated by eqn (4.13) yields the following expression for the sound
decay:
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As a consequence of the non-uniform distribution of the wall absorption
the decay of the reverberant energy does not follow an exponential law but
is inversely proportional to the time. The steady state directional distribu-
tion is given by

    
I( )  

| sin |
ε

ε
≈

const
(4.17)

4.4 Enclosures with curved walls

In this section we consider enclosures the boundaries of which contain
curved walls or wall sections. Practical examples are domed ceilings as are
encountered in many theatres or other performance halls, or the curved
rear walls of many lecture theatres. Concavely curved surfaces in rooms are
generally considered as critical or even dangerous in that they have the
tendency to impede the uniform distribution of sound energy in a room or
to concentrate it to certain spots.

Formally, the law of specular reflection as expressed by eqn (4.1) is valid
for curved surfaces as well as for plane ones, since each curved surface can
be approximated by many small plane sections. Keeping in mind the wave
nature of sound, however, one should not apply this law to a surface the
radius of curvature of which is not very large compared to the acoustical
wavelength. Whenever the radius of curvature is comparable or even smaller
than the wavelength the surface will scatter an impinging sound wave rather
than reflect it specularly, as described in Section 2.6.

Very often, curved walls in rooms or halls are spherical or cylindrical seg-
ments, or they can be approximated by such surfaces. Then we can apply the
laws of rays reflected at a concave or convex mirror, known from optics. It
should be kept in mind that the direction of the ray paths can be inverted.
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Figure 4.11 Reflection of a ray bundle from concave and convex mirrors.

In Fig. 4.11a the section of a concave, spherical or cylindrical mirror
with radius R is depicted. A bundle of rays originating from a point S is
reflected at the mirror and is focused into the point P from which it di-
verges. Focusing of this kind occurs when the distance of the source from
the mirror is larger than R/2; if the incident bundle is parallel the focus is at
distance R/2. The source distance a, the distance of the focus b and the
radius of the mirror are approximately related by

    

1 1 2

a b R
    + = (4.18)

If the source is closer to the mirror than R/2 (see Fig. 4.11b), the reflected
ray bundle is divergent (although less divergent than the incident one) and
seems to originate from a point beyond the mirror. Equation (4.18) is still
valid and leads to a negative value of b.
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Finally, we consider the reflection at a convex mirror as depicted in
Fig. 4.11c. In this case the divergence of any incident ray bundle is in-
creased by the mirror. Again, eqn (4.18) can be applied to find the position
of the ‘virtual’ focus after replacing R with −R. As before, the distance b is
negative.

The effect of curved surfaces can be studied more quantitatively compar-
ing the intensity of the reflected ray bundle with that of a bundle reflected
at a plane mirror. The latter is given by

    
I

A

a x n0   
|   |

=
+

while the intensity of the bundle reflected at a curved mirror is

    
I

B

b x nr   
|   |

=
−

In both formulae A and B are constants; x is the distance from the centre of
the mirror, and the exponent n is 1 for a cylindrical mirror and equals 2 for
a spherical one. (It should be kept in mind that the distance b has a negative
sign for concave mirrors with a < R/2 and for convex mirrors.) At x = 0
both intensities must be equal which yields A/B = | a/b |n. Thus the ratio of
both intensities is
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I
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x b

n
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 =

+
−

(4.19)

Figure 4.12 plots the level Lr = 10 log10(Ir/I0) derived from this ratio for the
cases depicted in Fig. 4.11 with n = 2 (spherical mirror). The concentration

Figure 4.12 Level difference in ray bundles reflected from a curved and a plane
reflector, at distance x from the reflector: (a) concave mirror, a = 2R; (b) concave
mirror, a = R/3; (c) convex mirror, a = 2R.
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occurring for a > R/2 (curve a) is clearly seen as a pole. Apart from this,
there is a range of increased intensity in which Lr > 0. From eqns (4.18) and
(4.19) it can be concluded that this range is given by

    
x

b a R a
        < −







= −








− −

2
1 1 1 1

1 1

(4.20)

Outside that range, the level Lr is negative indicating that the reflected bundle
is more divergent than it would be when reflected from a plane mirror. If
a < R/2 (curve b), the intensity is increased at all distances x. Finally, the
convex mirror (curve c) reduces the intensity of the bundle everywhere.
According to eqn (4.19) the limit of Lr for very large distances is

Lr →
    
10 10log   

b

a

n

for x → ∞ (4.21)

From these findings a few practical conclusions may be drawn. A concave
mirror may concentrate the impinging sound energy in certain regions, but
it may also be an effective scatterer which distributes the energy over a
wide angular range. Whether the one or the other effect dominates depends
on the positions of the source and the observer. Generally, the following
rule3 can be derived from eqn (4.20). Suppose the mirror in Fig. 4.11 is
completed to a full circle with radius R. Then, if both the sound source and
the receiver are outside this volume, the undesirable effects mentioned at
the beginning of this section are not to be expected.

The laws outlined above are valid only for narrow ray bundles, i.e. as
long as the inclination of the rays against the axis is sufficiently small, or,
what amounts to the same thing, as long as the aperture of the mirror is not
too large. Whenever this condition is not met, the construction of reflected
rays becomes more difficult. Either the surface has to be approximated
piecemeal by circular or spherical sections, or the reflected bundle must be
constructed ray by ray. As an example, the reflection of a parallel bundle of
rays from a concave mirror of large aperture is shown in Fig. 4.13. Obvi-
ously, the reflected rays are not collected within one point, instead, they
form an envelope which is known as a caustic. Next to the axis, the caustic
reaches the focal point in the distance b = R/2 in accordance with eqn (4.18)
with a → ∞. A concave surface in which sound concentration in exactly one
point can occur even if the aperture is large is the ellipse or the ellisoid,
which, by definition, has two foci as shown in Fig. 4.14. If a sound source
S is placed in one of them, all the rays emitted by it are collected in the
other one. For this reason, enclosures with elliptical floor plan are plagued
by quite unequal sound distribution even if neither the sound source nor
the listener are in a geometrical focus. The same holds, of course, for halls
with circular floor plan since the circle is a limiting case of the ellipse.
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A striking experience can be made in halls of this shape if a speaker is
close to its wall. A listener who is also next to the wall although distant
from the sound source (see Fig. 4.15) can hear the speaker quite clearly
even if the latter speaks in a very low voice or whispers. The enclosure is
said to form a ‘whispering gallery’ in this case. The explanation for this phe-
nomenon is simple. If the speaker’s head is more or less parallel to the wall,

Figure 4.13 Reflection of a parallel ray bundle from a spherical concave mirror of
large aperture.

Figure 4.14 Collection of sound rays in an elliptical enclosure.
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Figure 4.15 Whispering gallery.

most of the sound rays hit the wall at grazing incidence and are repeatedly
reflected from it. If the wall is smooth and uninterrupted by pillars, niches,
etc., the rays remain confined within an annular region; in other words: the
wall conducts the sound along its perimeter. One of the most famous ex-
amples of a whispering gallery is in St. Paul’s Cathedral in London which has
a narrow annular platform above the floor which is open to visitors. Gen-
erally, a whispering gallery is an interesting curiosity, but if the hall is used
for performances, the acoustical effects caused by it are rather disturbing.

4.5 Enclosures with diffusely reflecting walls

In Section 2.6 walls with diffuse reflection brought about by surface irregu-
larities, rapidly changing wall impedence, etc., have been discussed. Enclos-
ures the boundaries of which have this property at least in parts are quite
different in their acoustical behaviour from those with specularly reflecting
walls. Generally, diffuse wall reflections result in a more uniform distribu-
tion of the sound energy throughout the room.

The reflection from a surface is said to take place in a totally diffuse
manner if the directional distribution of the reflected or the scattered en-
ergy does not depend in any way on the direction of the incident sound.
This case can be realised physically quite well in optics. In contrast, in
acoustics and particularly in room acoustics, only partially diffuse reflec-
tions can be achieved. But nevertheless the assumption of totally diffuse
reflections comes often closer to the actual reflecting properties of real walls
than that of specular reflection, particularly if we are concerned not only
with one but instead with many successive ray reflections from different
walls or portions of walls. This is the case with reverberation processes and
in reverberant enclosures.

Totally diffuse reflections from a wall take place according to Lambert’s
cosine law: suppose an area element dS is ‘illuminated’ by a bundle of
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Figure 4.16 Ideally diffuse sound reflection from an acoustically rough surface.

parallel or nearly parallel rays which make an angle ϑ0 to the wall normal,
whose intensity is I0. Then the intensity of the sound which is scattered in a
direction characterised by an angle ϑ, measured at a distance r from dS, is
given by

    
I r I S

r
B S

r
( )   

cos cos
   

cos
= =0

0

2 0 2
d d

ϑ ϑ
π

ϑ
π

(4.22)

B0 being the so-called ‘irradiation strength’, i.e. the energy incident on unit
area of the wall per second. This formula holds provided that there is no
absorption, i.e. the incident energy is re-emitted completely. If this is not
the case, I(r, ϑ) has to be multiplied by an appropriate factor 1 − α(ϑ).
Figure 4.16 shows the wall element dS and a circle representing the direc-
tional distribution of the scattered sound; the length of the arrow pointing
to its periphery is proportional to cos ϑ.

According to eqn (4.22), each surface element has to be considered as a
secondary sound source, which is expressed by the fact that the distance r,
which determines the intensity reduction due to propagation, must be meas-
ured from the reflecting area element dS. This is not so with specular reflec-
tion: here the geometrical intensity decrease of a sound ray originating
from a certain point is determined by the total length of the path between
the sound source and the point of observation with no regard as to whether
this path is bent or straight.

In the following we assume that the whole boundary of the considered
enclosure reflects the impinging sound in a completely diffuse manner. This
assumption enables us to describe the sound field within the room in a
closed form, namely by an integral equation. To derive it, we start by
considering two wall elements, dS and dS′, of a room of arbitrary shape
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Figure 4.17 Illustration of eqn (4.24).

(see Fig. 4.17). Their locations are characterised by the vectors r and r′′′′′,
respectively, each of them standing for a trio of suitable coordinates. The
straight line connecting them has the length R, and the angles between this
line and the wall normals in dS and dS′ are denoted by ϑ and ϑ′.

Suppose the element dS′ is irradiated by the energy B(r′′′′′) dS′ per second,
where B is the ‘irradiation strength’. The fraction ρ of it will be re-radiated
from dS′ into the space, where the ‘reflection coefficient’

ρ = 1 − α

To avoid unnecessary complication we assume that the absorption coeffi-
cient α and hence ρ is independent of the angles ϑ and ϑ′.

According to Lambert’s law of diffuse reflection as formulated in eqn
(4.22), the intensity of the energy re-radiated by dS′ and received at dS is

dI = B(r ′′′′′)ρ(r ′′′′′)
    

cos ′
′

ϑ
πR

S
2

d (4.23)

The total energy per second and unit area received at r from the whole
boundary is obtained by multiplying this equation by cos ϑ and integrating
it over all wall elements dS′. If the direct contribution Bd from some sound
source is added, the following relation is obtained:4, 5
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It takes regard of the finite travelling time of sound energy from the trans-
mitting wall element dS′ to the receiving one dS by replacing the argument
t with t − R/c.

Equation (4.24) is an inhomogeneous integral equation for the irradi-
ation strength B of the wall. It is fairly general in that it contains both the
steady state case (for Bd and B independent of time t) and that of a decaying
sound field (for Bd = 0). Once it is solved, the energy density at any point P
inside the room can be obtained from

w(r, t) =
        

1
2π

ρ ϑ
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B t
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c R
S w t
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 ′
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d d (4.25)

R′ is the distance of the inner point from the element dS′ while ϑ″ – as
before – denotes the angle between the wall normal in dS′ and the line
connecting dS′ with the receiving point.

Generally, the integral equation (4.24) must be numerically solved. Closed
solutions are available for a few simple room shapes only. One of them is
the spherical enclosure, for which

    

cos cos
  

ϑ ϑ
π

′ =
R S2

1

with S denoting the surface of the sphere. Then the above integral equation
reads simply

B = 〈ρB〉 + Bd

where the brackets indicate averaging over the whole surface. From this the
following steady state solution is easily obtained
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Of more practical interest is the flat room as already mentioned in Section
4.1. It consists of two parallel walls (ceiling and floor); in lateral directions
it is unbounded. Many shallow factory halls or open plan bureaus may be
treated as such a flat room as long as neither the sound source nor the obser-
vation point are close to one its side walls. As in Section 4.1 (see Fig. 4.5)
we assume that both walls have the same, constant absorption coefficient
α or ‘reflection coefficient’ ρ = 1 − α and that the sound source is in the
middle between both planes. The steady state solution of eqn (4.26) for this
situation is6
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In this expression, J0 is the Bessel function of order zero, and K1 is a modi-
fied Bessel function of first order (see Ref. 7). Here r is the horizontal
distance from a point source with the power output P.

This equation is certainly too complicated for practical applications.
However, it can be approximated by a simpler formula which will be pre-
sented in Section 9.4 along with a diagram explaining its content.
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5 Reverberation and steady
state energy density

Reverberation is a phenomenon which plays a major role in every aspect of
room acoustics and which as yet yields the least controversial criterion for
the judgement of the acoustical qualities of every kind of room. It is this
fact which justifies devoting the major part of a chapter to reverberation
and to the laws which govern it. Another important subject to be dealt with
in this chapter is the diffuse sound field. Both reverberation and diffusion
are closely related to each other: the laws of reverberation can be formu-
lated in a simple way only for sound fields where all directions of sound
propagation contribute equal sound intensities, not only in steady state
conditions but at each moment in decaying sound fields, at least in the
average over time intervals which are short compared with the duration of
the whole decaying process. Likewise, simple relationships for the steady
state energy density in a room as will be derived in Section 5.5 are also
based on the assumption of a diffuse field. It is clear that in practical situ-
ations these stringent conditions are met only approximately. A completely
diffuse sound field can be realised fairly well in certain types of measuring
rooms, such as reverberation chambers. But in other rooms, too, the ap-
proximation of the actual sound fields by diffuse ones is not too crude an
approach. In most instances in this chapter we shall therefore assume com-
plete uniformity of sound field with respect to directional distribution.

In Chapter 3 we regarded reverberation as the common decaying of free
vibrational modes. In Chapter 4, however, reverberation was understood
to be the sum total of all sound reflections arriving at a certain point in the
room after the room was excited by an impulsive sound signal. The present
chapter presents a more thorough discussion of sound field diffusion since
this is the basic condition for the validity of the common reverberation
laws. Furthermore some extensions and generalisations will be described
including sound decay in enclosures with imperfect sound field diffusion,
and in systems consisting of several coupled rooms. As in the preceding
chapter, we shall consider the case of relatively high frequencies, i.e. we
shall neglect interference and diffraction effects which are typical wave
phenomena and which only appear in the immediate vicinity of reflecting
walls or when obstacle dimensions are comparable with the wavelength.
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We therefore suppose that the applied sound signals are of such a kind that
the direct sound and all reflections from the walls are mutually incoherent,
i.e. that they cannot interfere with each other (see Section 4.1). Conse-
quently, their energies or intensities can simply be added together regard-
less of mutual phase relations. Under these assumptions sound behaves in
much the same way as white light. We shall, however, not so much con-
sider sound rays but instead we shall stress the notion of, ‘sound particles’
i.e. of small energy packets which travel with a constant velocity c along
straight lines – except for wall reflections – and are supposed to be present
in very large numbers. If they strike a wall with absorption coefficient α,
only the fraction 1 – α is reflected from the wall. Thus the absorption
coefficient will be interpreted as an ‘absorption probability’.

Of course, the sound particles considered in room acoustics are purely
hypothetical and have nothing to do with the sound quanta or phonons
known from solid state physics. To bestow some physical reality upon
them we can consider the sound particles to be short sound pulses with a
broad spectrum propagating along sound ray paths. Their shape is not
important; in principle they are not even required to have uniform shapes,
but they must all have the same power spectrum. The most important
condition is their mutual incoherence.

5.1 Basic properties and realisation of diffuse sound fields
As mentioned before, the uniform distribution of sound energy in a room is
the crucial condition for the validity of most common expressions describ-
ing either the decay of sound fields or the steady state energy contained in
them. Therefore it is appropriate to deal first with some properties of dif-
fuse sound fields and, furthermore, to discuss the circumstances under which
we can expect them in enclosures.

Suppose we select from all sound rays crossing an arbitrary point P in a
room a bundle within a vanishingly small solid angle dΩ. Since the rays of
the bundle are nearly parallel, an intensity I(ϕ, ϑ) dΩ can be attributed to
them with ϕ and ϑ characterising their direction (see Fig. 5.1). Further-
more, we can apply eqn (1.29) to these rays, according to which the energy
density

Figure 5.1 Bundle of nearly parallel sound waves.
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Figure 5.2 Constancy of energy density in a diffuse sound field.
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is associated with them.
Now the condition of a diffuse sound field requires that the quantity I

does not depend on the angles ϕ and ϑ, hence integrating over all directions
is achieved by multiplication by 4π, and the total energy density is

    
w

I

c
  =

4π
(5.2)

To prove the spatial constancy of the energy density in Fig. 5.2 the direc-
tional distributions in three points of a diffuse sound field, P, Q, and R are
shown as polar diagrams. These diagrams are circles because we assumed
sound field isotropy. Each pair of points has exactly one sound ray in
common. Since the energy propagated along a sound ray does not change
with distance (see Chapter 4) it follows that they contribute the same amount
of energy in both points. Therefore the circles must have equal diameters.
Of course, this argument applies to all points of the space. Thus we can
conclude that in a diffuse sound field the energy density is everywhere the
same, at least under stationary conditons.

Another important property of a diffuse sound field has already been
derived in Section 2.5. According to eqn (2.39), the energy incident on a
wall element dS per second is πIdS if I does not depend on the angle of
incidence or, if we introduce the ‘irradiation strength’ B obtained by divid-
ing that energy by dS (see Section 4.5):

B = πI (5.3)
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With the same argument as above we can conclude that the irradiation
strength B is also constant over the whole wall if the sound field is diffuse.
Combining eqns (5.2) and (5.3) leads to the important relation

    
B

c
w  =

4
(5.4)

which is to be compared with the corresponding eqn (1.29) for a plane
wave. As we shall see it is this relation which enables us to derive simple
formulae for the sound decay and the energy density under steady state
conditions.

We are now in a position to set up an energy balance from which a
simple law for the sound decay in a room can be derived. Suppose a sound
source feeds the acoustical power P(t) into a room. It is balanced by an
increase of the energy content Vw of the room and by the losses due to the
absorptivity of its boundary which has the absorption coefficient α:
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or, by using eqn (5.4) and replacing αS with A, the so-called ‘equivalent
absorption area’ of the room:
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For steady state conditions P is constant and the differential quotient is
zero and we obtain the energy density:
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If, on the other hand, the sound source is switched off at t = 0, i.e. for
P(t) = 0 for t ≥ 0, the differential equation (5.5) becomes homogeneous and
has the solution

w(t) = w0e−2δ t for t ≥ 0 (5.7)

with the damping constant

    
δ   =

cA

V8
(5.7a)
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The damping constant is related to the reverberation time T according to
eqn (3.45). After inserting the numerical value of the sound speed in air one
obtains:

    
T

V

A
  .  = 0 163 seconds (5.8)

(all lengths expressed in metres). This is probably the best-known formula
in room acoustics. It is due to to W.C. Sabine1, who derived it first from the
results of numerous ingenious experiments, later on also from considera-
tions similar to the present ones. Nowadays, it is still the standard formula
for predicting the reverberation time of a room, although it is obvious that
it fails for high absorptivities. In fact, even for α = 1 it predicts a finite
reverberation time although an enclosure without of any sound reflections
from walls cannot reverberate. The reason for the limited validity of eqn
(5.8) is that the room is not – as assumed – in steady state conditions
during sound decay, and is less the faster the sound energy decays. In the
following sections more exact decay formulae will be derived which can
also be applied to relatively ‘dead’ enclosures. Furthermore, eqn (5.8) and
its more precise versions will be extended to the case of non-uniform ab-
sorptivity of its boundary.

In the rest of this section the circumstances will be discussed on which
the diffusity of the sound field depends.

It is obvious that a diffuse sound field cannot exist in enclosures whose
walls have the tendency to concentrate the reflected sound energy in certain
regions or directions. Likewise, a very non-uniform distribution of wall
absorption will continuously extinguish potential ray paths and hence im-
pede the formation of a diffuse sound field. In contrast, highly irregular
room shapes help to establish a diffuse sound field by continuously redis-
tributing the energy in all possible directions. Particularly efficient in this
respect are rooms with acoustically rough walls, the irregularities of which
scatter the incident sound energy in a wide range of directions, as has been
already described in Section 2.6. Such walls are referred to as ‘diffusely
reflecting’, either partially or completely. The latter case is characterised by
Lambert’s law as expressed in eqn (4.22). Although this ideal behaviour is
frequently assumed as a model of diffuse reflection, it will hardly ever be
encountered in reality. Any wall or ceiling will, although it may be struc-
tured by numerous columns, niches, cofferings and other ‘irregular’ decora-
tions, diffuse only a certain fraction of the incident sound whereas the
remaining part of it is reflected into specular directions. The reader will be
reminded of Fig. 2.14 which presented the scattering characteristics of an
irregularly shaped ceiling.

But even if the boundary of an enclosure produces only partially diffuse
reflections its contribution to sound field diffusion is considerable since in
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each reflection some ‘specular sound energy’ is converted into non-specular
energy, whereas the reverse process, the conversion of diffuse energy into
specular energy, never occurs.

This may be illustrated by the following consideration: We split the
reflected energy fraction (1 − α) into two parts, namely into the portion
s(1 − α), which is reflected specularly, and the portion (1 − s)(1 − α), which
is scattered in non-specular directions. Under steady state conditions the
regularly reflected components add up to the energy density
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whereas the total energy density except for the contribution due to direct
sound is given by
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Hence the fraction of non-specularly reflected energy in the stationary sound
field is
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(5.9)

This relation is represented graphically in Fig. 5.3. The contribution of
diffuse sound components to the total energy density is actually higher than
indicated by these curves, since the specularly reflected components travel
across the room in quite different directions and thus themselves contribute
to the increase in diffusion. Nevertheless, the diagram makes it evident that
complete diffusion of a sound field is never reached in real enclosures.

Quite a different method of achieving a diffuse sound field is not to pro-
vide for rough or corrugated walls, and thus to destroy specular reflections,
but instead to disturb the free propagation of sound in the space. This is
effected by suitable objects – rigid bodies or shells – which are suspended
freely in the room at random positions and orientations, and which scatter
the arriving sound waves or sound particles in all directions. This method is
quite efficient even when applied only to parts of the room, or in enclosures
with partially absorbing walls. Of course, no architect would agree to fill
the free space of a concert hall or a theatre completely with such ‘volume
diffusors’, therefore a uniform distribution of them can only be installed in
certain measuring rooms, so-called reverberation chambers (see Section 8.7),
for which achieving a diffuse sound field is of particular importance.

To estimate the efficiency of volume scatterers we assume N of them to
be randomly distributed in a room with volume V, but with constant mean
density 〈ns〉 = N/V. The scattering efficiency of a single obstacle or diffusor
is characterised by its ‘scattering cross-section’ Qs, which is defined as the
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Figure 5.3 Fraction of diffuse sound components in a steady state sound field for
partially diffuse wall reflections.

sound energy it scatters per second divided by the intensity of an incident
plane sound wave. If we again stress the notion of sound particles, the
probability that a particle will travel a distance r or more without being
scattered by a diffusor is exp (−〈ns〉 Qsr) or exp (−r/e), where we have intro-
duced the mean free path e between two collisions of sound particles with
diffusors. In Section 5.2 we shall introduce the mean free path of sound
particles between successive wall reflections b = 4V/S, with S denoting the
wall surface of a room. Obviously the efficiency of volume diffusors de-
pends on the ratio e/b. The probability that a sound particle will undergo no
collision between two successive wall reflections and hence the fraction of
unscattered sound energy is

s = exp (−b /e) ≈ 1 − b /e

The latter approximation is permitted since in most cases e >> b.
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This expression is inserted into eqn (5.9) assuming small wall absorption
(α << 1). Then the fraction of diffused sound energy in a stationary sound
field is obtained as

    

w w
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≈

+
1

1 αe b
(5.9a)

If a diffusor is not small compared with the acoustical wavelength, its
scattering cross-section Qs is roughly twice its visual cross-section. How-
ever, only half of this value represents scattering of energy in different
directions; the other half corresponds to the energy needed to form the
‘shadow’ behind the obstacle by interfering with the sound wave (see Sec-
tion 2.6). For non-spherical diffusors, the cross-section has to be averaged
over all directions of incidence.

We conclude this section by emphasising that sound field diffusion must
strictly be distinguished from diffuse wall reflections. The diffuse sound
field in a room is an ideal condition which can only be approached by any
kind of diffusor. Even if the latter diffuse the incident sound perfectly, the
result – namely the diffusion of the sound field – may be much less than
ideal.

5.2 Mean free path and average rate of reflections

In the following material we shall make use of the concept of ‘sound par-
ticles’, already introduced at the beginning of this chapter. We imagine that
the sound field is composed of a very great number of sound particles. Our
goal is the evaluation of the laws according to which the sound energy
decreases with time in a decaying sound field. For this purpose we have
firstly to follow the ‘fate’ of one sound particle and subsequently to average
over many of these fates.

In this connection the notion of the ‘mean free path’ of a sound particle
is frequently encountered in literature on room acoustics. The notion itself
appears at first glance to be quite clear, but its use is sometimes misleading,
partly because it is not always evident whether it refers to the time average
or the particle (ensemble) average.

We shall start here from the simplest concept: a sound particle is ob-
served during a very long time interval t; the total path length ct covered by
it during this time is divided by N, the number of wall reflections which
have occurred in the time t:

    
b

d
    = =

ct

N

c
(5.10)

where d = N/t is the average reflection frequency, i.e. the average number of
wall reflections per second.
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Here b and d are clearly defined as time averages for a single sound
particle; they may differ from one particle to another. In order to obtain
averages which are representative of all sound particles, we should average
b and d once more, namely over all possible particle fates. In general, the
result of such a procedure would depend on the shape of the room as well
as on the chosen directional distribution of sound paths.

Fortunately we can avoid such cumbersome methods and arrive at simple
and general relations between room geometry and the required averages by
assuming the sound field to be diffuse. Then no additional specification of
the directional distribution is required. Furthermore, no other averaging is
necessary. This is so because – according to our earlier discussions – a dif-
fuse sound field is established by non-predictable changes in the particle dir-
ections either by diffuse wall reflections or by particles being scattered by
obstacles during their free propagation. In any case the sound particles change
their roles and their direction again and again, and during this process they
completely lose their individuality. Thus the distinction between time aver-
ages and particle or ensemble averages is no longer meaningful; it does not
matter whether the mean free path and all other averages are evaluated by
averaging over many free paths traversed by one particle or by averaging
for one instant over a great number of different particles. Or in short:

time average = ensemble average

Now we shall calculate the mean free path of sound particles in rooms of
arbitrary shape with walls which reflect the incident sound in an ideally
diffuse fashion, i.e. according to Lambert’s cosine law of eqn (4.22). For
the present purpose we shall formulate that law in a slightly different way:
the probability of a sound particle being reflected or re-emitted into a solid
angle element dΩ, which includes an angle ϑ with the wall normal under
consideration, is

P(ϑ) dΩ =
  

1

π
cos ϑ dΩ (5.11)

It is thus entirely independent of the particle’s previous history.
We consider all possible free paths, i.e. all possible chords in the enclos-

ure (see also Fig. 4.17) and intend to carry out an averaging of their lengths
R over all wall elements dS as well as over its directions.

These paths are, however, not traversed with equal probabilities. When
averaging over all directions we have to concede a greater chance to the
small angles ϑ according to eqn (5.11) by using a proper weighting func-
tion. Therefore we obtain
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RdS(ϑ) is the length of the chord originating from dS under an angle ϑ with
respect to the wall normal and S is the total wall area of the room. Now we
interchange the order of integrations, keeping in mind, however, that ϑ is
not measured against a fixed direction but against the wall normal, which
changes its direction from one wall point to another. Thus we obtain

      
b     ( ) cos= ′
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2π
ϑ ϑ

πS
R S

S

S�� ��d ddΩ

The second integrant is the volume of an infinitesimal cylinder with axis RdS

and base dS; the second integral is thus the double volume 2V of the room.
The remaining integral simply yields 2π and therefore our final result is

    
b   =

4V

S
(5.12)

We should remember that this formula, which has been derived by Kosten2

in a somewhat similar way, is valid only for rooms with diffusely reflecting
walls.

The direct calculation of the mean reflection frequency d is even simpler.
Let us suppose that a single sound particle carries the energy e0. Its contri-
bution to the energy density of the room is

    
w

e

V
  = 0 (5.13)

On the other hand, if the sound particle strikes the wall d times per second,
it transports on average the energy per second and unit area

    
B

e

S
  = d 0 (5.14)

to the wall. By inserting these expressions into eqn (5.4) one arrives at the
important relation

    
d  =

cS

V4
(5.15)

This expression, which is the time average as well as the particle average,
has already been derived in Section 4.2 for rectangular rooms with specularly
reflecting walls. It is evident, that the present derivation is more general
and, in a way, more satisfying than the previous one. By inserting it into
eqn (5.10) it again leads to the famous expression for the mean free path
length, eqn (5.12).
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The mean free path is the mean value of the probability density govern-
ing the occurrence of a free path l between two subsequent wall reflections.
The probability density itself depends on the shape of the room, and the
same is true for other characteristic values such as the variance. As an
illustration Fig. 5.4 shows the distributions of free path lengths for three
different shapes of rectangular rooms with diffusely reflecting walls; ab-
scissa is the path length divided by its mean value b. These distributions
have been calculated by application of a Monte-Carlo method, i.e. by simu-
lating the sound propagation.3

Typical parameters of path length distributions, evaluated in the same
way for different rectangular rooms, are listed in Table 5.1. The first col-
umn contains the relative dimensions of the various rooms and the second
lists the corresponding results of the Monte-Carlo computation for the

Figure 5.4 Distribution of free path lengths for rectangular rooms with diffusely
reflecting walls.
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mean free path divided by the ‘classical’ value of eqn (5.12). These numbers
are very close to unity and can be looked upon as an ‘experimental’ confirma-
tion of eqn (5.12), since the Monte-Carlo method could be characterised as
‘computer experiments’. The remaining insignificant deviations from 1 are
due to random errors which are inherent in the method. It may be added
that a similar investigation of rooms with specularly reflecting walls, which
are equipped with scattering elements in the interior, yields essentially the
same result. Finally, the third column of Table 5.1 contains the ‘relative
variance’ of the path length distributions:

  
γ 2

2

2
  

   
=

−Q b

b
(5.16)

Its significance will be discussed in Section 5.4.

5.3 Sound decay and reverberation time

As far back as Chapter 4, formulae have been derived for the time depend-
ence of decaying sound energy and for the reverberation time of rectangu-
lar rooms (eqns (4.9) to (4.11)). In the preceding section it has been shown
that the value cS/4V of the mean reflection frequency, which we have used
in Chapter 4, is valid not only for rectangular rooms but for rooms of
arbitrary shape provided that the sound field in their interior is diffuse.
Thus the general validity of those reverberation formulae has been proven.

If the sound absorption coefficient of the walls depends on the direction
of sound incidence, which will usually be the case, we must use the average
value α uni of eqn (2.41) instead of α.

Further consideration is necessary if the absorption coefficient is not con-
stant along the walls but depends on the location of a certain wall element.

Table 5.1 Some Monte-Carlo results of mean free paths and of γ 2 for rectangular
rooms with diffusely reflecting walls

Relative dimensions bMC/b γ 2

1:1:1 1.0090 0.342
1:1:2 1.0050 0.356
1:1:5 1.0066 0.412
1:1:10 1.0042 0.415
1:2:2 1.0020 0.363
1:2:5 1.0085 0.403
1:2:10 0.9928 0.465
1:5:5 1.0035 0.464
1:5:10 0.9993 0.510
1:10:10 1.0024 0.613
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Figure 5.5 Enclosure with two different types of boundary.

For the sake of simplicity we assume that there are only two different
absorption coefficients in the room under consideration. The subsequent
generalisation of the results for more than two different types of wall will
be obvious.

We therefore attribute an absorption coefficient α1 to the wall portion
with area S1 and α2 to the portion with area S2, where S1 + S2 = S. The
situation is depicted in Fig. 5.5. We follow the life of a particular sound
particle over N wall reflections, among which there are N1 reflections from
S1 and N2 = N − N1 reflections from S2. These numbers can be assumed to
be distributed in some way about their mean values
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S

S
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2  = N
S

S
(5.17)

S1/S and S2/S are the a priori probabilities for the arrival of a sound particle
at wall portion S1 and S2, respectively.

In a diffuse sound field subsequent wall reflections are stochastically
independent from each other, i.e. the probability of hitting one or other
portion of the wall does not depend on the past history of the particle. In
this case the probability of N1 collisions with wall portion S1 among a total
number of reflections N is given by the binomial distribution
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After N1 collisions with S1 and N2 = N − N1 collisions with S2, a sound
particle has the remaining energy

    E N EN
N N N( )  (   ) (   )1 0 1 21 11 1= − − −α α (5.19)
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The expectation value of this expression with respect to the distribution
(5.18) is
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where we have applied the binomial theorem. Since S1 + S2 = S, this can be
written as

〈EN〉 = E0(1 − n)N = E0 exp [N ln(1 − n)] (5.20)

with

n =
    

1

S
(S1α1 + S2α2) (5.20a)

This latter formula is the most important result of the foregoing derivation.
It indicates that the absorption coefficients of the various portions of wall
have to be averaged arithmetically using the respective areas as weighting
factors. Finally, we replace the total number N of wall reflections in time t
by its expectation value or mean value dt with d = cS/4V and obtain for the
energy of the ‘average’ sound particle and hence for the total energy in the
room
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From this we can evaluate the reverberation time, i.e. the time interval T in
which the reverberating sound energy reaches one millionth of its initial
value
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As in eqns (4.6) to (4.11), the effect of air attenuation may be taken into
account by an additional factor exp (−mct) in eqn (5.21). This leads, after
inserting the numerical value for the sound velocity, to the final expression
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with

    
n  = ∑1

S
Si iα (5.23a)

where we have already generalised eqn (5.20a) for any number of different
portions of the wall. In this formula all lengths have to be expressed in
metres; T is measured in seconds.

Equations (5.22) or (5.23) together with (5.23a) are known as Eyring’s
reverberation formula, although they have been derived independently by
Norris as well as by Schuster and Waetzmann.

For many practical purposes it is safe to assume that the average absorp-
tion coefficient n is small compared with unity. Then the logarithm in
eqn (5.23) can be expanded into a series

−ln(1 − n) =
  
n

n n
      . . .+ + +

2 3

2 3

and all terms of higher than the first order in n may be neglected. This
results in Sabine’s reverberation formula:
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This has already been derived in the preceding section (see eqn (5.8)), how-
ever in a different way and without the term 4mV which can be neglected
for small rooms.

In deriving eqn (5.20) the quantities NS1/S and NS2/S have been con-
sidered as mean values or expectation values of the probability distribution
(5.18). If they are considered instead as the exact collision rates with the
wall portions S1 and S2, i.e. if they are inserted for N1 and N2 in eqn (5.19),
we get instead of eqn (5.21)
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with the average ‘absorption exponent’
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The resulting equation
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which could again be completed by taking into account the air attenuation
by adding a term 4mV to the denominator, is known as Millington–Sette’s
formula. It differs from eqn (5.23) only in the manner in which the absorp-
tion coefficients of the various portions of wall are averaged; here the aver-
age absorption coefficient is replaced by the average absorption exponent.

The averaging according to eqn (5.25a) has a strange consequence: let us
suppose that a room has a portion of wall, however small, with the absorp-
tion coefficient αi = 1. It would make the average (5.25a) infinitely large
and hence the reverberation time evaluated by eqn (5.26) would be zero.
This is obviously an unreasonable result.

5.4 The influence of unequal path lengths

The incorrect averaging rule of eqn (5.25a) was the result of replacing a
probability distribution by its mean value. However, in the derivation of
eqn (5.21) we have practised a similar simplification in that we have
replaced the actual number of reflections in the time t by its average dt. For
a more correct treatment we ought to introduce the probability Pt(N) of
exactly N wall reflections occurring in a time t and to calculate E(t) as the
expectation value of eqn (5.20) with respect to this probability distribution:
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As an abbreviation we introduce, in a similar way as in eqn (5.25), the
‘absorption exponent’

a = −ln(1 − n) (5.28)

If, for the moment, N is considered as a continuous variable, the function
exp (−Na) in eqn (5.27) can be expanded in a Taylor series around dt by
setting N = dt + (N − dt). Truncating this series after its third term yields
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Before inserting this expression into eqn (5.27) it should be kept in mind that

∑ Pt(N) = 1 and ∑ (N − dt)Pt(N) = 0
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whereas

∑ (N − dt)2Pt(N) =     σ N
2

is the variance of the distribution Pt(N). Hence
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2 21d dσ σ (5.29)

The latter approximation is permissible if the second term in the bracket is
small compared with unity. On the other hand,     σ N

2  is closely related to the
relative variance γ 2 of the path length distribution as defined in eqn (5.16).
To illustrate this Fig. 5.6 plots the individual ‘fates’ of three particles, i.e.
the number N of their wall collisions as a function of the distance x they
travelled. It is obvious that
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Now suppose a particle travels N successive and independent free paths l1,
l2, . . . , lN. According to basic laws of probability (see Ref. 4, for instance),
their sum x has the variance σ 2

x = Nb 2γ 2 since b 2γ 2 is the relative variance
of the free path lengths. After inserting σx into the relation above one
arrives at
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Figure 5.6 Time histories of three sound particles – relation between σx and σN.
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or, if we finally replace N by its mean value nt,

σ 2
N ≈ dtγ 2 (5.30)

This expression, inserted into eqn (5.29), yields the final result
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(5.31)

Accordingly, the reverberation time is
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with the modified absorption exponent
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In Fig. 5.7 the corrected absorption exponent a″ is compared with the
absorption coefficient α as is used in Sabine’s formula (eqn (5.24) with
m = 0 and uniform absorption). It plots the relative difference between both
quantities for various parameters γ 2. The curve γ 2 = 0 corresponds to Eyring’s

Figure 5.7 Relative difference between a″ and n in per cent after eqn (5.33).
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formula (5.22 and 5.23). Accordingly, the latter is strictly valid for one-
dimensional enclosures only where all paths have exactly the same length.
For γ 2 ≠ 0, a″ is smaller than − ln(1 − α). Hence the reverberation time is
longer than that evaluated by the Eyring formula.

With eqn (5.32) we have for the first time arrived at a reverberation
formula in which the shape of the room is accounted for by the quantity γ 2.
Unfortunately the latter can be calculated directly only for a limited number
of room shapes with high symmetry. For a sphere, for instance, it turns out
to be 1/8. For other shapes γ 2 can be determined by computer simulation.
Results obtained in this way for rectangular rooms have already been pre-
sented in Table 5.1. It is seen that for most shapes γ 2 is close to 0.4 and it
is likely that this value can also be applied to other enclosures provided
that their shapes do not deviate too much from that of a rectangular room.
It should be noted that for higher values of γ 2 eqn (5.33) is not very accur-
ate because of the approximations we have made in its derivation. Sup-
pose, for instance, the free path lengths are exponentially distributed, i.e.
according to

    
P l l
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It has the relative variance γ 2 = 1. On the other hand, the exponential distri-
bution of path lengths is associated with the Poisson distribution of colli-
sion number,4 i.e.
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If this expression is inserted into eqn (5.27) we get
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This corresponds with Sabine’s formula5 (5.24) (with m = 0). It means that
the correct curve for γ 2 = 0 in Fig. 5.7 coincides with the horizontal axis.

For rooms with suspended ‘volume diffusors’ (see Section 5.1), the distri-
bution of free path lengths is greatly modified by the scattering obstacles.
The same applies to γ 2 but not to the mean free path length.3

5.5 Enclosure driven by a sound source

In Section 5.1 a differential equation (5.5) was derived for the energy den-
sity w in a room in which a sound source with time-dependent power
output P(t) is operated. This equation has the general solution:
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with δ = cA/8V. Accordingly, the energy density is calculated by convolving
the power output P(t) with the ‘energetic impulse response’ of the enclosure:

w(t) =
    
P t

V
t( )

1 2e− δ (5.34a)

As a first application we consider, as shown in Fig. 5.8, a sound source the
power output of which varies sinusoidally with the angular frequency Ω:

P(t) = P0(1 + cos Ωt) (5.35)

Inserting this into eqn (5.34) and carrying out the integration leads after
some obvious manipulations to
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Figure 5.8 Flattening effect of transmission in a room on the modulation of
sound signals: (a) power of original sound signal; (b) received intensity.
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and
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Since m is always smaller than unity the reverberation of the room has a
flattening effect on the modulation imposed by the energy input to the
room and – at the same time – a typical delay by t0 as shown in Fig. 5.8b.

The function m(Ω) is often referred to as the ‘modulation transfer func-
tion’ (MTF) since it expresses the way in which the modulation index m is
changed by the transient behaviour of the room. Its magnitude may be
combined with the phase shift Ωt0 to the complex MTF which in the present
case reads:
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An even more important – and simpler – example is that of a source with
constant power output P. Here eqn (5.34) yields immediately:
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This formula agrees with eqn (5.6) which was obtained directly from eqn
(5.5) by setting the time derivative zero. The subscript r is to indicate that
wr is the energy density of the ‘reverberant field’ excluding the contribution
of the direct sound.

The application of eqn (5.37) to practical problems becomes question-
able for average absorption coefficients n = A/S which are not small com-
pared with unity. This is because the contribution of the very first reflections,
which are not randomly distributed, to the total energy density is relatively
high then. Therefore the range of validity of the above formulae with re-
spect to n is substantially smaller than that of the reverberation formulae
developed in the preceding sections.

This is one of the reasons why the absorption of a room and its rever-
beration time is determined by decay measurements and not usually by
measuring the steady state energy density and application of eqn (5.37)
which would be possible in principle.

On the other hand, however, steady state measurements are quite useful
for the evaluation of the total power P of a sound source using eqn (5.37)
if n is known or determined by a reverberation measurement. This proced-
ure is free from objection as long as the room utilised for this purpose is a
‘reverberation chamber’ with a long reverberation time and hence with low
absorption. We should bear in mind that in the measurement of acoustic
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power an error of 10% (corresponding to 0.4 dB) can usually be tolerated,
but not so in the determination of absorption or reverberation time.

The above formulae for the stationary energy density are only valid with
some degree of accuracy as long as the point of observation is not too close
to the sound source, otherwise direct sound would prevail. Assuming omni-
directional sound radiation, the direct sound energy density is given by
(compare eqns (1.28a) and (1.32))
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In Fig. 5.9 wr and wd are presented schematically as a function of distance
r from the sound source. For a certain distance r = rh both energy densities
are equal. This quantity rh is called the ‘reverberation distance’ and is given
by

    
r

A V

T
h     .

/ /

=






=







1

4
0 1

1 2 1 2

π π
(5.38)

In the latter expression we have introduced the reverberation time T from
Sabine’s formula (with m ≈ 0); V is to be measured in m3.

Figure 5.9 Space dependence of direct and reverberant energy density wd and wr.
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Many sound sources have a certain directivity which can be characterised
by their ‘gain’ or ‘directivity factor’ γ . The latter is defined as the ratio of
the maximum intensity (or energy density) and the intensity averaged over
all directions:
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Then the maximum reverberation distance is
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In any case, the total energy density can be expressed as
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5.6 Enclosures with diffusely reflecting walls

So far we have dealt with enclosures in which the sound field is perfectly
diffuse – a condition which, as we know – can only be approximately
realised. In this section we do not need to know anything about the struc-
ture of the sound field which may not in fact be diffuse. Instead it is as-
sumed that the boundary reflects the sound energy in a perfectly diffuse
manner. This is a somewhat less stringent but nevertheless also an ideal
condition which can only be approached by real walls. On the other hand it
has been shown by Hodgson6 that in all practical situations a part of the
sound energy is diffusely reflected by the boundary, and since the decaying
sound field is made up mainly of higher order reflections, and since the
conversion of ‘specular sound’ into ‘diffuse sound’ is irreversible, one can
safely assume that after a few reflections nearly all sound energy has under-
gone at least one diffuse reflection.

In this case the propagation of sound energy within the enclosure can be
described by the integral equation (4.24) for the ‘irradiation strength’ B of
the boundary, as discussed in Section 4.5. Since we are interested only in
sound decay we can omit the term due to direct irradiation by a sound
source. Then the integral equation reads:
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Figure 5.10 Logarithmic decay curves in a rectangular room with relative
dimensions 1:2:3, calculated from eqn (5.42) for three different receiver positions.
Floor (2:3) is totally absorbing, the remaining walls are free of absorption. The
abscissa unit is the mean free path length.

Figure 5.10 presents a few decay curves obtained by numerically solving
this equation for a rectangular room with relative dimensions 1:2:3. The
‘floor’ (i.e. one of the walls with dimensions 2:3) was assumed to be totally
absorbent (ρ = 0), whereas the remaining walls are free of absorption (ρ = 1).
The curves show the decay of the irradiation strengths at three different
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Figure 5.11 Effective absorption exponents α*, divided by –ln(1 – n), as obtained
from Monte-Carlo computations for rectangular rooms with α = 1 for one wall
and α = 0 for the others. Numbers in the figure indicate the relative room
dimensions; the first two numbers refer to the absorbing wall.

locations. At the beginning there are some fluctuations which, however,
gradually fade out leaving a straight line according to an exponential decay
of the sound energy. It should be noted that the final slope is the same for
all three curves. (Generally, the independence of the final slope has been
proven by R.N. Miles7). However, it differs from that predicted by Eyrings’s
or Sabine’s reverberation formulae, eqns (5.23) and (5.23a). In the example
of Fig. 5.10, the slope is about − 1.55 dB/MFP (mean free path), whereas
after Eyring’s formula (5.23) it is only 10 log10 (1 − 3/11) = −1.38 dB/MFP.

Deviations from Eyring’s predictions are typical for enclosures with im-
perfect sound field diffusion. To illustrate this Fig. 5.11 presents the results
of some computer simulations carried out for rectangular rooms of various
shapes. In these examples one of the six walls is assumed to be totally
absorbent (α = 1), while the remaining ones are supposed to be free of ab-
sorption (α = 0). Each room is characterised by its relative dimensions; the
first two numbers refer to the absorbing wall. The plotted quantity is the
effective absorption exponent divided by its Eyring value −ln l; the abscissa
is the mean absorption coefficient n. It is seen that the results deviate from
the ordinate 1 in both directions; in particular, for relatively flat rooms
with a highly absorbing floor (see right side of the figure) the absorption
exponent is higher, hence the reverberation time is shorter than predicted
by the Eyring formulae. This is of practical interest since virtually all aud-
itoria are of this general type because of the high audience absorption.
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How can we understand such deviations? Let us have a look at Fig. 5.12
in which a section through a rectangular room is depicted. In Fig. 5.12a it
is assumed that the ‘floor’ of it is highly absorbing while the remaining
walls are rigid or nearly rigid. As indicated, a floor point P is ‘irradiated’
from all directions while a ceiling (or wall) point Q does not receive energy
from the floor because of its high absorption. Hence the floor receives and
absorbs more energy than it would under diffuse conditions. In Fig. 5.12b
the absorbing surface is a side wall. In this case it is obvious that sound
particles in the left part of the enclosure are not much affected by the
absorbing wall. Therefore we expect that in the right half of the enclosure
there is less energy than in the left one, and hence the absorbing wall is hit
by less sound particles than it would be in a diffuse field.

To predict the slope of the final decay and hence the reverberation time,
several numerical iteration schemes have been developed7,8 which do not
require a complete solution of eqn (5.42). For the practical design of a hall,
such methods are too complicated. In the following, a relatively simple
correction to the Eyring absorption exponent is described which is more
useful. We introduce in eqn (5.42)

B(r, t) = B(r) exp (−da*t) (5.43)

where d = cS/4V is the average number of a sound particle’s collisions with
a wall per second and a* is the absorption exponent to be determined.
Furthermore, the distance R in the exponential of eqn (5.42) is replaced
with the mean free path b = c/d. These substitutions leave

B(r) =
        

exp( *)
d
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R
B S

S
π
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Figure 5.12 Sound absorption in a long room: (a) with an absorbing ‘floor’;
(b) with absorbing ‘side wall’.
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This equation is integrated over the whole boundary. By interchanging the
order of integrations on the right-hand side and observing that
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In the following, we restrict ourselves to enclosures of polyhedral shape, i.e.
to rooms bounded by N plane walls with areas Sn. Furthermore, we assume
the reflection coefficient and the irradiation strength to be constant over
each wall. Then the double integrals in eqn (5.45) become sums over the
wall index. Now we replace the missing knowledge of the exact irradiation
strengths by a reasonable guess. Obviously the irradiation strength of one
particular wall with index n consists of the contributions from the N − 1
remaining walls, and each of them is proportional to the reflection coeffi-
cient and to the area of the wall which produces it:
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Inserting the latter expression into the modified eqn (5.45) yields, after
some easy manipulation,
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In most cases the second term in the denominator is much smaller than the
first and hence can be neglected. Finally, we can expand the second log-
arithm into a power series and neglect all terms of higher than first order:
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The second term of this expression is always positive – a consequence of
our somewhat crude approach. Therefore this correction formula applies
only to situations in which the effective absorption exponent is expected to
exceed the Eyring value (right side of Fig. 5.11). According to the previous
discussion, however, these are the practically important cases, and it is
easily verified that eqn (5.48) accounts quite well for the deviations.
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5.7 Coupled rooms

Sometimes a room is shaped in such a way that it can barely be considered
as a single enclosure but rather as a collection composed of partial rooms
separated by virtually non-transparent walls. The only communication is
by relatively small apertures in these walls. The same situation is encoun-
tered if the partition walls are totally closed but are not completely rigid,
and have some slight sound transparency. A particular aspect of such
‘coupled rooms’ has been discussed in Chapter 3. Now their acoustical
properties will be dealt with from a geometrical and statistical point of
view.

Let us suppose that the sound field in every partial room is a diffuse one
and that reverberation would follow an exponential law if there were no
interaction between them. Then for the ith partial room we have after eqn
(5.5) (with Pi = 0):
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δi being the damping constant of that room without coupling.
The coupling elements permit an energy exchange between the partial

rooms. If there are wall apertures with areas Sij between rooms i and j, the
energy loss in room i per second due to coupling is ∑′jBiSij = cS′iwi/4 with
S′i = ∑′jSij. On the other hand, the energy increase contributed by room j per
second is cSijwj/4. Hence the energy balance yields for the ith room
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The apostrophe indicates that the summation index must be extended over
all integers from 1 to m except i, where m is the total number of partial
rooms. This system of linear differential equations can be further simplified
to read
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where
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First we look for the conditions under which the decay process obeys an
exponential law with one common damping constant δ′. In this case we
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would obtain dwi /dt = −2δ ′wi. Inserting this into eqns (5.50) yields m
homogeneous linear equations. For the energy densifies wi:

ki1w1 + ki2w2 + . . . + (kii + 2δ′)wi + . . . + kimwm = 0 (i = 1, 2, . . . , m)
(5.51)

which have non-vanishing solutions only if their coefficient determinant is
zero. This condition is an equation of degree m (secular equation) for δ ′
with m roots δ ′1, δ ′2, . . . , δ ′m. If they are inserted one after the other into
eqns (5.51), the energy densities associated with a certain root can be deter-
mined except for a common factor

    w w wr r
m
r

1 2
( ) ( ) ( ), , . . . , (r = 1, 2, . . . , m)

For a certain root δ′r the mutual ratios of the wi
(r) remain constant during

the whole decay process. Hence they also represent the ratios of the initial
values wi0

(r). This result can be summarised as follows. There are at most
(since in principle several roots δ ′ can happen to coincide) m possibilities
for the reverberation to follow the same exponential law throughout the
whole room system. A particular set of initial energy densities is required
for each of these possibilities.

The general solution is obtained as a linear superposition of the special
solutions evaluated above:
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If the energy densities wi(0) of all partial rooms at the beginning of the
decay process are given, the constants cr can be determined unambiguously
from eqn (5.52) by setting t = 0. The decay of sound energy in the ith
partial room is then represented by
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which is similar to eqn (3.41a). In contrast to the coefficients c 2
n of the

latter, however, the aij are not necessarily all positive and so we cannot
draw the conclusion (as we did in Section 3.5) that the logarithmic decay
curves are either straight lines or curved upwards.

If the system of coupled rooms is driven by sound sources, a term Pi /Vi

must be added on the right-hand side of each of the equations (5.50) with
Pi denoting the power output of the source in the partial room i. For con-
stant power Pi the steady state energy densities are obtained by setting the
time derivatives to zero. This yields the equations:
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They can be used to determine the initial values wi(0) for the energy decay
which starts after all sound sources have been stopped at t = 0, according to
eqn (5.52).

If the subroom i is not driven by a sound source (Pi = 0), the sum on the
right-hand side of eqn (5.53) is zero, and the same is true for the time
derivative in eqn (5.50) immediately after switching off all sources:
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i.e. the decay curve starts with zero slope. In the same way it may be
inferred that not only the initial slope of the decay curve but also its initial
curvature vanishes if neither the considered room nor one of its adjacent
neighbours are driven by an own sound source.

These findings may be illustrated by an example depicted in Fig. 5.13. It
refers to three coupled rooms of equal volumes in a line, but only one of
them is driven directly by a sound source. Accordingly the steady state level
from which the decay process starts is highest in room 1, and only in this
room the decay curve begins with a negative slope. The decay rate in this

Figure 5.13 Example for sound decay in three coupled rooms: δ2 = k12 = δ1/10,
δ3 = δ1/2, k13 = 0, k23 = δ1/5.



Reverberation and steady state energy density 145

room becomes gradually less steep since the adjacent rooms feed some of
the energy stored in them back to room 1. The decay curves in the rooms
2 and 3 have horizontal tangents at t = 0; moreover, the initial curvature
of decay curve 3 is zero.

On the whole we can see that in coupled rooms the variety of possible
decay curves is considerably greater than it is in a single uncoupled room.

The occurrence of typical coupling effects as outlined above is not re-
stricted to room systems of a special geometrical structure. They can also
be observed in apparently normal rooms if the exciting conditions are such
that they excite one or several normal modes whose eigenfrequencies are
close to those of other modes but whose energy exchange is only slight.
Convexly curved decay curves (viewed from the positive ordinate direction)
are a safe indication of the presence of several energy stores which are only
weakly coupled to each other.

The transition from coupled systems to normal rooms is, of course, a
gradual one. The simple theory of coupled rooms applies to all cases where
the energy per second being exchanged by coupling is not substantially
larger than the energy being lost by absorption. If it is assumed that the
latter is small compared with the energy cSiwi/4Vi striking the walls per
second, and if coupling is effected by apertures, the condition for the occur-
rence of coupling effects reads simply

S′i << Si

or, more generally,

| kii | <<
    

cS

V
i

i4
(5.54)

This means that typical coupling phenomena are to be expected if the prob-
ability of a sound particle being absorbed or of escaping to a neighbouring
partial room is small compared with the probability of it being reflected
from any wall of the room under consideration.

Sometimes, when calculating the reverberation time of a room, it is ad-
visable to take coupling effects into account. This aspect will be discussed
in Chapter 9.
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6 Sound absorption and
sound absorbers

Of considerable importance to the acoustics of a room are the loss mechan-
isms which reduce the energy of sound waves when they are reflected from
walls as well as during their free propagation in the air. They influence the
strengths of the direct sound and of all reflected components and therefore
all acoustical properties of the room.

The attenuation of sound waves in the free medium becomes significant
only in large rooms and at relatively high frequencies; for scale model experi-
ments, however, it causes serious limitations. We have to consider it inevitable
and something which cannot be influenced by the efforts of the acoustician.
Nevertheless, in reverberation calculations it has to be taken into account.
Therefore it is sufficient in this context to give a brief description of the
causes of air attenuation and to present the important numerical values.

The situation is different in the case of the absorption to which sound
waves are subjected when they are reflected. The magnitude of wall absorp-
tion and its frequency dependence varies considerably from one material to
another. With the proper choice of materials used in construction and finish
or by applying special arrangements, the absorption and hence the sound
transmission in a room can be substantially influenced in a desired way;
furthermore, a particular frequency dependence can be given to it. There is
also an unavoidable contribution to the wall absorption which depends on
certain physical properties of the medium, but it is so small that in most
cases it is not significant.

Since it is one of the most common tasks of an acoustic consultant to
achieve a desired reverberation time in a room with a prescribed frequency
dependence and since this is done by selecting the proper wall materials and
absorbers, this chapter will discuss in some detail the principles and mechan-
isms of the most important types of sound absorbers. For a comprehensive
account the reader is referred to F. Mechel’s book on sound absorption.1

6.1 The attenuation of sound in air

In the derivation of the wave equation (1.5) it was tacitly assumed that the
changes in the state of the air, caused by the sound waves, occurred without
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loss. This is not quite true, however. We shall refrain here from a proper
amendment of the basic equations and from a quantitative treatment of
attenuation. Instead the most prominent loss mechanisms are briefly de-
scribed in the following. As earlier, the propagation losses will be charac-
terised by the decrease of the intensity in a plane sound wave, which is,
according to eqn (1.16a):

I(x) = I0 exp (−mx)

(a) Equation (1.4) is based on the assumption that the changes in the state
of a volume of gas take place adiabatically, i.e. there is no heat exchange
between neighbouring volume elements. The equation states that a com-
pressed volume element has a slightly higher temperature than an element
which is rarefied by the action of the sound wave. Although the temperat-
ure differences occurring at normal sound intensities amount to small frac-
tions of a degree centigrade only, they cause a heat flow because of the
finite thermal conductivity of the air. This flow is directed from the warmer
to the cooler volume elements. The changes of state are therefore not taking
place entirely adiabatically. According to basic principles of physics, the
energy transported by these thermal currents cannot be reconverted com-
pletely into mechanical, i.e. into acoustical energy; some energy is lost to
the sound wave. The corresponding portion of the attenuation constant m
increases with the square of the frequency.

(b) In a plane sound wave each volume element becomes periodically
longer or shorter in the direction of sound propagation. This distortion of
the original element can be considered as a superposition of an omnidirec-
tional compression or rarefaction and of a shear deformation, i.e. of a pure
change of shape. The medium offers an elastic reaction to the omnidirec-
tional compression proportional to the amount of compression, whereas
the shear is controlled by viscous forces which are proportional to the shear
velocity. Hence – as with every frictional process – mechanical energy is
irreversibly converted into heat. This ‘viscous portion’ of the attenuation
constant m also increases proportionally with the square of the frequency.

(c) Under normal conditions the above-mentioned causes of attenuation
in air are negligibly small compared with the attenuation caused by what is
called ‘thermal relaxation’. It can be described briefly as follows. Under
equilibrium conditions the total thermal energy contained in a certain quan-
tity of a uniform polyatomic gas is distributed among several energy stores
(degrees of freedom) of the gas molecules, namely as translational, vibra-
tional and rotational energy of the molecules. If the gas is suddenly com-
pressed, i.e. if its energy is suddenly increased, the whole additional energy
will be stored at first in the form of translational energy. Afterwards a
gradual redistribution among the other stores will take place. Or in other
words: the establishment of a new equilibrium requires a finite time. If
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Figure 6.1 Intensity attenuation constant (mλ) for a relaxation process.
The abscissa is the product of angular frequency ω and relaxation time τ.

compressions and rarefactions change periodically as in a sound wave, a
thermal equilibrium can be maintained – if at all – only at very low fre-
quencies; with increasing frequency the actual energy content of certain
molecular stores will lag behind the external changes and will accept or
deliver energy at the wrong moments.

This is a sort of ‘internal heat conduction’ which weakens the sound
wave just like the normal heat conduction with which we are more famil-
iar. The relative amount of energy being dissipated along one wavelength
has a maximum when the duration of one sound period is comparable with
a specific time interval, the so-called ‘relaxation time’ being characteristic
of the time lag in internal energy distribution.

In Fig. 6.1 the attenuation constant m multiplied by the wavelength for
a single relaxation process is plotted in arbitrary units as a function of
the product of frequency and relaxation time. The very broad frequency
range in which it appears is characteristic of a relaxation process. (For
comparison we refer to the resonance curve in Fig. 2.8b.) Moreover, the
relaxation of a medium causes not only a substantial increase in absorption
but also a slight change in sound velocity, but this is not of importance in
this connection.

For mixtures of polyatomic gases such as air, which consists mainly of
nitrogen and oxygen, matters are much more complicated because there are
many more possibilities of internal energy exchange which we shall not
discuss here.

Because of their importance in room acoustics and, in particular for the
calculation of reverberation time, a few numerical values of the intensity
related absorption constant m are listed in Table 6.1.
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Table 6.1 Attenuation constant of air at 20°C and normal atmospheric pressure,
in 10−3 m−1 (after Bass et al.2)

Relative Frequency (kHz)
humidity
(%)

0.5 1 2 3 4 6 8

40 0.60 1.07 2.58 5.03 8.40 17.71 30.00
50 0.63 1.08 2.28 4.20 6.84 14.26 24.29
60 0.64 1.11 2.14 3.72 5.91 12.08 20.52
70 0.64 1.15 2.08 3.45 5.32 10.62 17.91

6.2 Unavoidable wall absorption

Even if the walls, the ceiling and the floor of a room are completely rigid
and free from pores, they cause a sound absorption which is small but
different from zero. It only becomes noticeable, however, when there are
no other absorbents or absorbent portions of wall in the room, no people,
no porous or vibrating walls. This is the case for measuring rooms which
have been specially built to obtain a high reverberation time (reverberation
chambers; see Section 8.7). Physically this kind of absorption is again caused
by the heat conductivity and viscosity of the air.

According to eqn (1.4), the periodic temperature changes caused by a
sound wave are in phase with the corresponding pressure changes – apart
from the slight deviations discussed in the preceding section. Therefore the
maximum sound pressure amplitude which is observed immediately in front
of a rigid wall should be associated with a maximum of ‘temperature am-
plitude’, which in turn is possible only if the wall temperature can com-
pletely follow the temperature fluctuations produced by the sound field. In
reality the contrary is true: because of its high thermal capacity the wall
surface remains virtually at a constant temperature. Therefore, in some
boundary layer adjacent to the wall, strong temperature gradients will de-
velop and hence a periodically alternating heat flow will be directed to and
from the wall. This energy transport occurs at the expense of the sound
energy, since the heat which was produced by the wave in a compression
phase can only be partly reconverted into mechanical energy during the
rarefaction phase.

As we saw earlier, the component of the particle velocity which is normal
to the wall vanishes in front of a perfectly rigid wall. The parallel compon-
ent, i.e. the y-component of the particle velocity, can be calculated from
eqn (2.15) by applying
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which follows from eqn (1.2). The result (for x = 0 and R = 1) is
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It indicates that the parallel component does not vanish for oblique sound
incidence (θ ≠ 0). This, however, cannot be true, since in a real medium the
molecular layer immediately on the wall is fixed to the latter, which means
vy = 0 for x = 0. For this reason our assumption of a perfectly reflecting wall
is not correct, in spite of its rigidity. In reality a boundary layer is again
formed between the region of unhindered parallel motion in the air and the
wall; at oblique incidence particularly high viscous forces and hence a sub-
stantial conversion of mechanical energy into heat takes place in the bound-
ary layer.

Although the energy dissipation occurs due to both loss processes in a
certain layer of air, its effect is commonly described by an absorption coef-
ficient ascribed to the wall. It can be shown that the thicknesses of the
boundary layers are inversely proportional to the square root of the fre-
quency. Since, on the other hand, the gradients of the temperature and of
the parallel velocity component increase proportionally with frequency, both
contributions to the absorption coefficient are proportional to the square
root of the frequency. Their dependence on the angle of incidence, how-
ever, is different. The viscous portion is zero for normal sound incidence, as
can easily be seen from eqn (6.1), whereas the heat flow to and from the
wall does not vanish at normal incidence.

Both effects are very small even at the highest frequencies relevant in
room acoustics. For practical design purposes they can be safely neglected.

6.3 Sound absorption by vibrating or perforated boundaries

For the acoustics of a room it does not make any difference whether the
apparent absorption of a wall is physically brought about by dissipative
processes, i.e. by conversion of sound energy into heat, or by parts of the
energy penetrating through the wall into the outer space. In this respect an
open window is a very effective absorber, since it acts as a sink for all the
arriving sound energy.

A less trivial case is that of a wall or some part of a wall forced by a
sound field into vibration with a substantial amplitude. (Strictly speaking,
this happens more or less with any wall, since completely rigid walls cannot
be constructed.) Then a part of the wall’s vibrational energy is re-radiated
into the outer space. This part is withdrawn from the incident sound en-
ergy, viewed from the interior of the room. Thus the effect is the same as if
it were really absorbed. It can therefore also be described by an absorption
coefficient. In practice this sort of ‘absorption’ occurs with doors, windows,
light partition walls, suspended ceilings, circus tents and similar ‘walls’.
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Figure 6.2 (a) Pressures acting on a layer with mass M per unit area.
(b) Perforated panel.

This process, which may be quite involved especially for oblique sound
incidence, is very important in all problems of sound insulation. From the
viewpoint of room acoustics, it is sufficient, however, to restrict discussions
to the simplest case of a plane sound wave impinging perpendicularly onto
the wall, whose dynamic properties are completely characterised by its mass
inertia. Then we need not consider the propagation of bending waves on
the wall.

Let us denote the sound pressures of the incident and of the reflected
waves on the surface of a wall (see Fig. 6.2a) by p1 and p2, and the sound
pressure of the transmitted wave by p3. The total pressure acting on the
wall is then p1 + p2 − p3. It is balanced by the inertial force iωMv, where
M denotes the mass per unit area of the wall and v the velocity of the
wall vibrations. This velocity is equal to the particle velocity of the wave
radiated from the rear side, for which p3 = ρ0cv holds. Therefore we have
p1 + p2 − ρ0cv = iωMv, from which we obtain

Z = iωM + ρ0c (6.3)

for the wall impedance. Inserting this into eqn (2.8) yields
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This simplification is permissible for the case frequently encountered in
practice in which the characteristic impedance of air is small compared
with the mass reactance of the wall. Thus the ‘absorption’ becomes notice-
able only at low frequencies.

At a frequency of 100 Hz the absorption coefficient of a glass pane with
4 mm thickness is – according to eqn (6.4) – as low as 0.02 approximately.
For oblique or random incidence this value is a bit higher due to the better
matching between the air and the glass pane, but it is still very low. Never-
theless, the increase in absorption with decreasing frequency has the effect
that rooms with many windows sometimes sound ‘crisp’ since the rever-
beration at low frequency is not as long as it would be in the same room
without windows.

The absorption caused by vibrations of normal and single walls and
ceilings is thus very low. Matters are different for double or multiple walls,
provided that the partition on the side of the room under consideration is
mounted in such a way that vibrations are not hindered and provided that
it is not too heavy. Because of the interaction between the leaves and the
enclosed volume of air such a system behaves as a resonance system. This
will be discussed in the next section.

It is a fact of great practical interest that a rigid perforated plate or panel
has essentially the same properties as a mass-loaded wall or foil. Let us
look at Fig. 6.2b. Each hole in a plate may be considered as a short tube or
channel with length b; the mass of air contained in it, divided by the cross-
section, is ρ0b. Because of the contraction of the air stream passing through
the hole, the air vibrates with a greater velocity than that in the sound wave
remote from the wall, and hence the inertial forces of the air included in the
hole are increased. The increase is given by the ratio S2/S1, where S1 is the
area of the hole and S2 is the plate area per hole. Hence the equivalent mass
of the perforated panel per unit area is
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0 (6.5)

with
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The latter quantity is the perforation ratio of the plate; sometimes it is also
called ‘porosity’ (generally in a different context).

In eqn (6.5) the geometrical tube length (or plate thickness) b has been
replaced by an ‘effective length’ b′, which is somewhat larger than b:

b′ = b + 2δ b (6.7)
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The correction term 2δb, known as the ‘end correction’, accounts for the
fact that the streamlines cannot contract or diverge abruptly but only gradu-
ally when entering or leaving a hole (see Fig. 6.2b). For circular apertures
with radius a and with relatively large lateral distances it is given by

δb = 0.8a (6.8)

Finally, the absorption coefficient of a perforated panel is obtained from
eqn (6.4) by substituting M from eqn (6.5). Very often perforated plates are
so light that they will vibrate as a whole when a sound waves strikes them.
In this case M in eqn (6.5) must be replaced by
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Ms is the mass of the panel per square metre. (The frictional forces within
the holes are disregarded in this formula.)

The absorption coefficient given by eqn (6.4) is also the fraction of
sound energy which is transmitted by a wall or a perforated panel (in the
latter case it is necessary to use the first form of eqn (6.4) ). It thus char-
acterises the sound transparency of the wall. Let us illustrate this by an
example: to yield a transparency of 90%, ωM/2ρ0c must have the value   

1
3
.

At 1000 Hz this is the case with a foil or perforated panel with an (equi-
valent) mass per unit area of about 45 g /m2, which can be realised for
instance by a 1-mm thick sheet with 7.5% perforation with holes having a
diameter of 2 mm.

6.4 Extended resonance absorbers

In this section we take up again the earlier discussion of extended reson-
ance absorbers (see Section 2.4). As shown in Fig. 6.3a, such an absorber
consists basically of a layer with mass M per unit area, for instance a panel
of wood, chipboard, or gypsum board, which is mounted in front of a rigid
wall at a certain distance d. Under the influence of an impinging sound
wave it will perform vibrations, the amplitude of which depends strongly
on the sound frequency. The wall impedance of this system is given by
eqn (2.27). Its real part rs represents all vibrational losses of this system
which may have several physical reasons. One of them has to do with the
fact that any kind of panel must be fixed at certain points or along certain
lines to a supporting construction which forces the panel to be bent when it
vibrates. Now all elastic deformations of a solid, including those by bend-
ing, are associated with internal losses depending on the material and other
circumstances. In metals, for instance, the intrinsic losses of the material
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Figure 6.3 Resonance absorbers: (a) with vibrating panel; (b) with perforated
panel.

are relatively small, but they may be substantial for plates made of wood
or of plastic. If necessary the losses may be increased by certain surface
layers.

According to the discussion of the preceding section, the mass layer can
also be realised as a perforated plate (see Fig. 6.3b). If the holes are very
narrow the intrinsic frictional losses occurring in them may be sufficient
to ensure the low Q-factors which are needed for high efficiency of the
absorber. Principally, this is a way to manufacture transparent resonance
absorbers although it may prove difficult in practice to keep apertures with
diameters below 1 mm free of dust particles and other obstructions.

For wider holes it is usually necessary to provide for additional losses.
This can be achieved, for instance, by covering the holes by a porous fabric.
Another method of adapting the magnitude of rs for either kind of reson-
ance absorber to a desired value is to fill the air space behind the panel
partially or completely with porous material.

In the following discussion we assume the real part rs of the wall imped-
ance to be constant. Then all the eqns (2.27)–(2.34) can be applied to these
structures. The absorption coefficient in particular reaches a maximum
caused by resonance at the angular frequency ω0 given by eqn (2.28). In
Fig. 6.4 calculated absorption coefficients of panel resonators are plotted as
a function of the ratio ω /ω0 under the additional assumption Mω0 = 10ρ0c.
The parameter of the curves is the quantity rs /ρ0c. A maximum absorption
coefficient of 1 is reached only for exact matching, i.e. for rs = ρ0c. For
rs > ρ0c the maximum absorption is less than unity and the curves are broad-
ening. This is qualitatively the same behaviour as that of a porous layer
which is arranged at some distance and in front of a rigid wall (compare
Fig. 2.6). The resonance frequency of a panel absorber at normal sound
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incidence can be expressed equally well in the following form as this is
more useful for its practical application:

    
f

Md
0 1 2

600
  

( )
 

/
= Hz (6.10)

where M is in kg /m2 and d in cm.
This formula is relatively reliable if the mass layer is a perforated panel,

as in Fig. 6.3b, or a flexible membrane. Then the way in which the mass
layer is fixed has no influence on its acoustical effect, at least as long as the
sound waves arrive frontally. Matters are different for unperforated wall
linings made of thick panels with noticeable bending stiffness. As men-
tioned before, such panels will perform bending vibrations since they must
be fixed in some way, for instance by a lath construction mounted on the
wall (Fig. 6.3a). Hence their vibrations are controlled not only by the air
cushion behind them but also by their bending stiffness which adds to the
restoring force of the air cushion. Accordingly, the resonance frequency
will be higher than that given by eqn (6.10) namely

f ′0 = √(f 2
0 + f 2

1) (6.11)

with f1 = B1b
2/L denoting the lowest bending resonance frequency of a panel

supported (not clamped) at two opposite sides. In the latter expression, L is
the distance between the supports in metres and b is the panel’s thickness in
centimetres. The constant B1 depends on the material of the panel; it is 16
for plywood and 8–10 for chipboard or gypsum. Thus the typical range of
f1 is about 10–30 Hz whereas f0 is typically 50–100 Hz. This shows that the

Figure 6.4 Absorption coefficient α (calculated) of resonance absorbers, similar to
Fig. 6.3, as a function of frequency for normal sound incidence and for
Mω0 = 10ρ0c. Parameter is the ratio rS/ρ0c.
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influence of the bending stiffness may be neglected in most practical cases,
and eqn (6.10) may be applied to give at least a clue to the actual resonance
frequency.

The practical importance of resonance absorbers stems from the possibil-
ity of choosing their significant data (dimensions, materials) from a wide
range so as to give them the desired absorption characteristics. By a suitable
combination of several types of resonance absorbers the acoustic consult-
ant is able to achieve a prescribed frequency dependence of the reverbera-
tion time. The most common application of vibrating panels is to effect a
low frequency balance for the strong absorption of the audience at medium
and high frequencies, and thus to equalise the reverberation time. This is
the reason for the generally favourable acoustical conditions which are
frequently met in halls whose walls are lined with wooden panels or are
equipped with similar components, i.e. walls or suspended decoration ceil-
ings made of thin plaster. Thus it is not, as is sometimes believed by lay-
men, a sort of ‘amplification’ caused by ‘resonance’ which is responsible for
the good acoustics of many concert halls lined with wooden panels. Like-
wise, audible decay processes of the wall linings, which are sometimes also
believed to be responsible for good acoustics, do not occur in practical
situations although they might be possible in principle. If a resonance
system with the relative half-width (reciprocal of the Q-factor) ∆ω/ω0 is
excited by an impulsive signal, its amplitude will decay with a damping
constant δ = ∆ω/2 according to eqn (2.31); thus the reverberation time of
the resonator is
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.13 8 2 2
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(6.12)

To be comparable with the reverberation time of a room which is of the
order of magnitude of 1 s, the frequency half-width ∆f should be about
2 Hz. Such resonators can indeed be constructed. However, wall linings
with vibrating or perforated panels in front of rigid walls usually have half-
widths larger by several orders of magnitude.

Since neighbouring area elements of unperforated panels are strongly
coupled one to the other by bending forces, they cannot be considered as
‘locally reacting wall surfaces’. Therefore the simple angle dependence of
the reflection factor or of the absorption coefficient expressed by eqns (2.14b)
and (2.16) is not valid for them. On the contrary, at oblique incidence a
forced bending wave is excited in the panel. The propagation of this wave
is strongly affected by the sort of mounting, the arrangement of timber
battening which carries the panels, also by the elastic properties of the plate
material and by interaction with the air volume behind the panels. It is the
structure of these bending waves which strongly affects the absorption co-
efficient of the whole arrangement at oblique incidence. Since general state-
ments in this respect cannot be made, we shall not discuss this point in any
further detail.
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For resonators with perforated panels, the coupling of neighbouring holes
is effected by the air space behind the panels. The coupling can be de-
stroyed by hindering the lateral sound propagation in that air space. This is
done by lateral partitions made of rigid material, or by filling the air space
with porous and hence sound-absorbent materials like glass or mineral
wool. Neighbouring elements of the plate can then be regarded as inde-
pendent; the wall impedance and similarly the resonance frequency is inde-
pendent of the direction of sound incidence. To achieve this it is sufficient
to reduce the range of lateral coupling to about half a wavelength, since
smaller regions at oblique incidence are excited at almost equal phases. In
any case it is difficult to predict the exact resonance frequency of a reson-
ance absorber and assess correctly its losses which determine its absorption.
Therefore, the acoustical consultant must rely on his experience or on a
good collection of typical absorption data. In cases of doubt it may be
advisable to measure the absorption coefficient of a wall lining by putting a
sufficiently large sample of it into a reverberation chamber (see Section 8.7).

In Fig. 6.5 the absorption coefficients of a wooden wall lining and of a
resonance absorber with perforated panels are plotted as functions of the
frequency, measured at omnidirectional sound incidence.

Figure 6.5 Measured absorption coefficient of resonance absorbers at random
sound incidence: (a) wooden panels, 8 mm thick, 5 kg /m2, 30 mm distant from
rigid wall, with 20 mm thick rock wool plate behind (33.2 Rayl /cm); (b) panels,
9.5 mm thick, perforated at 1.6% (diameter of holes 6 mm), 5 cm distant from
wall, air space filled with glass wool.
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6.5 Helmholtz resonators

Sometimes sound absorbent elements are not distributed so as to cover the
wall or the ceiling of a room but instead they are single or separate objects
or things arranged either on a wall or in free space. Examples of this are
chairs, small wall openings or lamps; musical instruments too can absorb
sound. To sound absorbers of this sort we cannot attribute an absorption
coefficient, since the latter always refers to a uniform surface. Instead their
absorbing power is characterised by their ‘absorption cross-section’ or their
absorption area, which is defined as the ratio of sound energy being ab-
sorbed per second by them and the intensity which the incident sound wave
would have at the place of the absorbent object if it were not present:
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When calculating the reverberation time of a room, absorption of this type
of absorbers is taken into account by adding their absorption areas Ai to
the sum ∑α iSi (see eqn (5.23a)). The analogue holds for all other formulae
and calculations in which the total absorption or the mean absorption
coefficient n of a room appears, as for instance in the calculation of the
steady state energy density in a sound field according to eqn (5.37).

In this section we are discussing single sound absorbers with pronounced
resonant behaviour. Their characteristic feature is an air volume which is
enclosed by rigid boundaries and which is coupled to the surrounding space
by an aperture as shown in Fig. 6.6a. The latter may equally well be a
channel or a ‘neck’. The whole structure is assumed to be small compared
with the wavelength of sound and thus it has one single resonance only in
the interesting frequency range. It is brought about by interaction of the air
contained in the neck or in the aperture which is moved to and fro by the
sound and acts essentially as a mass load while the air cushion in the
enclosure is periodically compressed and rarefied, and opposes these changes
of state with the stiffness of a spring. Arrangements of this type are called
‘Helmholtz resonators’; examples of these are all kinds of bottles, vases and
similar vessels. In ancient times, as ‘Vitruv’s sound vessels’, they played an
unknown, possibly only a surmised, acoustical role in antique theatres and
other spaces.

Figure 6.6 depicts a Helmholtz resonator along with its schematic pre-
sentation. The neck has a length l and a cross-sectional area S; its opening
is flush with the surface of a rigid wall of infinite extension. The basic para-
meters of the resonator are the mass M = ρ0lS of the air enclosed in the
neck, and the volume V0 of the attached cavity. The shape of the latter is
of no relevance. Furthermore, there are some internal losses represented
by a resistance R0, the opening is loaded by its radiation impedance Rr

defined by
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Figure 6.6 Helmholtz resonator: (a) realisation; (b) schematic.

Pr = Rr R

(Pr = radiated power, v = air velocity in the neck). Since the lateral dimen-
sions of the opening are small compared with the wavelength, Pr can be
substituted from eqn (1.31) using D2 = (Si)2 = 2S2R. However, we must
keep in mind that the re-radiation of sound from the aperture is restricted
to the half space only and hence is a factor of 2 higher than in eqn (1.31).
Thus the radiation resistance is

    
R

S

c
c

S
r     = =







ρ ω

π
π ρ

λ
0

2 2

0

2

2
2 (6.14)

Now we assume that the resonator is working at its resonance frequency.
In this case all the reactive parts of the mechanical load will mutually
cancel each other. The remainder of the impedance, the ratio of the force F
acting on the piston and its velocity v is



Sound absorption and sound absorbers 161

  

F

v
= R0 + Rr

The energy converted to heat per second by the internal friction is
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where – as usual – the bars indicate time averaging. For a given radiation
resistance, Pabs is maximum if R0 is about equal to Rr. The force exerted
externally on the piston arises from the sound field. If p denotes the sound
pressure, the force is F = 2pS. The factor 2 takes into account the reflection
from the rigid wall surrounding the piston. By application of eqn (1.28) we
can express the sound pressure and hence the force in terms of the intensity
I of the incident sound wave:

W = 4S2K = 4ρ0cS2I (6.16)

Now we are ready to evaluate eqns (6.13) and (6.15) with R0 = Re by sub-
stituting from eqns (6.14) and (6.16), and we obtain as a final result
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where λ0 is the wavelength corresponding to the resonance frequency.
For the frequency dependence of the absorption area, we can essentially

adopt eqn (2.32):
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with
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As for any resonance system, the angular resonance frequency is given by

    
ω 0

2   =
s

M



162 Room Acoustics

Here s is the elastic stiffness of the air enclosed in the resonator volume.
To calculate it we suppose the air in the neck to be displaced by δx; the
corresponding change in air pressure is pi. According to the usual definition
of the stiffness,

    
s

p S

x
i    = = −

force

displacement δ

On the other hand, the pressure change is associated with a change δρ in
air density, which in turn is due to the volume change Sδx. These quantities
are related to each other by (see eqns (1.4) and (1.5a))
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where V0 denotes the resonator volume. Thus we obtain
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Now we can insert M = s/ω2
0 = ρ0c

2S2/ω 2
0V0 into eqn (6.18a) and express Rr

by eqn (6.14) with the result
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We observe that the maximum absorption area of a resonator matched to
the sound field is fairly large, according to eqn (6.17). On the other hand,
the Q-factor given by eqn (6.19) is very large too, which means that the
relative frequency half-width which is the reciprocal of the Q-factor is very
small, i.e. large absorption will occur only in a very narrow frequency
range. This is clearly illustrated by the following numerical example: sup-
pose a resonator is tuned to a frequency of 100 Hz corresponding to an
angular frequency of 628 s−1. This can be achieved conveniently by a reson-
ator volume of 1 litre. If it is matched, the resonator has a maximum
absorption area which is as large as 1.87 m2. Its Q-factor is – according to
eqn (6.19) – about 500, the relative half-width is thus 0.002. This means, it
is only in the range from 99.9 to 100.1 Hz that the absorption area of the
resonator exceeds half its maximum value. Therefore the very high absorp-
tion in the resonance is paid for by the exceedingly narrow frequency band-
width. This is why the application of such weakly damped resonators does
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not seem too useful. It is more promising to increase the losses and hence
the bandwidth at the expense of maximum absorption.

Finally, we investigate the problem of audible decay processes, which we
have already touched on in the preceding section. The reverberation time of
the resonator can again be calculated by the relation (6.12)
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In many cases this time cannot be ignored when considering the reverbera-
tion time of a room. What about the perceptibility of the decay process?

It is evident from the derivation of the absorption area, eqn (6.17), that
the same amount of energy per second which is converted to heat in the
interior of the resonator is being re-emitted by it, since we have assumed
R0 = Rr. Its maximum radiation power is thus I(λ2

0/2π), I being the intensity
of the incident sound waves. Thus the intensity of the re-radiated sound at
distance r is
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Both intensities are equal at a distance
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The decay process of the resonator is therefore only audible in its immedi-
ate vicinity. In the example mentioned above this critical distance would be
0.54 m; at substantially larger distances the decay cannot be heard.

6.6 Sound absorption by porous materials

In Section 6.2 inevitable reflection losses of sound waves impinging on
smooth surfaces were discussed which are caused by viscous and thermal
processes. They occur within a boundary layer next to the surface, pro-
duced by the sound field. The thickness of this layer is typically in the range
of 0.01 to 0.2 millimetres, depending on the frequency.

The absorption due to these effects is negligibly small if the surface
is smooth (see Fig. 6.7a). It is larger, however, at rough surfaces since
the roughness increases the volume of the zone in which the losses occur
(Fig. 6.7b). And it is even more pronounced if the material contains pores,
channels and voids connected with the air outside. A material of this kind is
drawn schematically in Fig. 6.7c. Then the pressure fluctuations associated
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Figure 6.7 Lossy boundary layer: (a) in front of a smooth surface; (b) in front of
a rough surface; (c) in front of and in a porous material.

with the external sound field give rise to alternating air flows in the pores
and channels, the walls of which will be filled more or less by the lossy
layer, so to speak. The consequence is that a significant amount of mech-
anical energy is withdrawn from the external sound field and is converted
into heat.

This mechanism of sound absorption concerns all porous materials with
pores accessible from the outside. Examples are the ‘porous layers’ which
the reader encountered in Section 2.4 and which can be thought of as
woven fabrics or thin carpets. More compact materials as used for rever-
beration control in rooms are mostly manufactured from incombustible
fibres (‘glass wool’ or ‘rock wool’) or granules by pressing them together,
often with the addition of suitable binding agents. Further common mater-
ials are foams of certain polymers, or porous bricks.

Of course it is not possible to describe exactly and in every detail the
acoustical properties of such complicated structures; one usually has to
resort to simplifying assumptions. In this presentation we do not attempt to
give a description which pretends to be quantitative; instead we shall re-
strict our discussions to a highly idealised model of a porous material, the
so-called Rayleigh model, which qualitatively exhibits the essential features.

It consists of a great number of similar equally spaced parallel channels
which traverse a skeleton material considered to be completely rigid (see
Fig. 6.8). It is assumed that the surface of that system, being located
at x = 0, is perpendicular to the axes of the channels; in the positive x-
direction it is assumed that the model is unbounded.

First we consider the sound propagation in a single channel. We suppose
that it is so narrow that the profile of the air stream is determined almost
completely by the viscosity of the air and not by any inertial forces. This is
always the case at sufficiently low frequencies (compare also eqn (6.26)).
Then the same lateral distribution of flow velocities prevails in the interior
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Figure 6.8 Rayleigh model, schematic representation.

of the channel as for constant (i.e. for non-alternating) flows; and likewise
the flow resistance of the channel per unit length, which is defined by
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has virtually the same value as for constant flow velocity. (In this formula h
is the flow velocity averaged over the cross-section of the channel.) It is
known from flow dynamics that for a flow between parallel planes at dis-
tance b, Ξ′ is given by

    
Ξ′  =

12
2

η
b

(6.23)

whereas for narrow channels with circular cross-section (radius a)

    
Ξ′  =

8
2

η
a

(6.24)

In these formulae η denotes the viscosity of the streaming medium. For air
under normal conditions η = 1.8 × 10−5 kg m−1 s−1. In some texts on acous-
tics specific flow resistances are measured in units of ‘Rayl /cm’. The con-
version into the SI system is effected by the formula

1 Rayl /cm = 1000 kg m−3 s−1
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Figure 6.9 Forces acting on a length element in a rigid channel.

In order to study the sound propagation within one channel, consider
a length element dx of it (see Fig. 6.9). The net force acting in positive
x-direction on the air in it is −(∂p/∂x) dx dS, with dS denoting the cross-
sectional area of the channel. It is kept at equilibrium by an inertial force
ρ0(∂h/∂t) dx dS and a frictional force Ξ′h dx dS, according to eqn (6.22).
Thus the force equation which is analogous to eqn (1.2) reads
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This relation assumes that the flow velocity (or the particle velocity) is
constant over the whole cross-section and equal to h. This is of course not
true. In reality a certain velocity distribution develops across and in the
channel. However, a more thorough investigation shows that the representa-
tion (6.25) can be applied with sufficient accuracy so long as

  

ρ ω0 4
Ξ′

  r (6.26)

The equation of continuity (1.3) is not affected by the viscosity, thus
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Into eqns (6.25) and (6.27) we insert the following plane wave relations:

p = S exp [i(ωt − k′x)], h = j exp [i(ω t − k′x)]

and obtain two homogeneous equations for p and h:

k′p − (ωρ0 − iΞ′)h = 0, ω p − ρ0c2k′h = 0 (6.28)
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Setting the determinant, formed of the coefficients of p and h, equal to zero
yields the complex propagation constant

k′ = β′ − iγ ′ =
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with the phase constant β′ = 2π /λ′ and the attenuation constant γ ′ = m ′/2
(compare eqn (1.17)).

If we insert this result into one of eqns (6.28), we obtain the ratio of
sound pressure to velocity, i.e. the characteristic impedance in the channel:
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For very high frequencies – or for very wide channels – these expressions
approach the values ω /c and ρ0c, valid for free sound propagation, because
then the viscous boundary layer occupies only a very small fraction of the
cross-section. In contrast to this, at very low frequencies eqn (6.29) yields
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since √i = (1 + i)/√2. The attenuation in this range is thus considerable: a
wave is reduced in its amplitude by 54.6 dB per wavelength.

From the characteristic impedance Z′0 inside the channels we pass to the
‘average characteristic impedance’ Z0 of a porous material by use of
the porosity σ as already introduced in eqn (6.6), which is the ratio of the
cross-sectional area of one channel and the surface area per channel:

    
Z

Z
0

0  = ′
σ

(6.32)

Likewise, the ‘outer flow resistance’ Ξ, which can be measured directly by
forcing air through a test sample of the material, is related to Ξ′ by

  
Ξ

Ξ
  = ′

σ
(6.33)

For highly porous materials such as rock wool or mineral wool the porosity
is close to unity, the specific flow resistance Ξ′ is mostly in the range from
5000 to 105 kg m−3 s−1.
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Now we apply the above relations to a typical arrangement consisting of
a homogeneous layer of porous material in front of a rigid wall. The thick-
ness of the layer is d (see Fig. 6.10). A sound wave arriving at the surface of
the layer will be partially reflected from it; the remaining part of the sound
energy will penetrate into the material and again reach the surface after its
reflection from the rigid rear wall. Then it will again split up into one
portion penetrating the surface and another one returning to the rear wall,
and so on. This qualitative consideration shows that the reflected sound
wave can be thought of as being made up of an infinite number of success-
ive contributions, each of them weaker than the preceding one because of
the considerable attenuation of the interior wave. Furthermore, it shows
that the reflection factor and hence the absorption coefficient may show
maxima and minima, depending on whether the various components inter-
fere constructively or destructively at a given frequency.

For a quantitative treatment which will be restricted, however, to normal
sound incidence we refer to eqn (2.20), according to which the ‘wall imped-
ance’ of an air layer of thickness d in front of a rigid wall is −iρ0c cot (kd).
By replacing ρ0c with Z0 and k with k′ we obtain for the wall impedance of
the porous layer

Z = −iZ0 cot (k′d) (6.34)

From this expression the reflection factor and the absorption coefficient can
be calculated using eqns (2.7) and (2.8).

For the following discussion it is useful to separate the real and the
imaginary part of the cotangent:

    
cot ( )  

sin ( )  sinh ( )

cosh ( )  cos ( )
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β γ
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Figure 6.10 Porous layer in front of a rigid wall.
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Then one can draw the following qualitative conclusions:

(a) For a layer which is thin compared with the sound wavelength, i.e. for
kd << 1, cot (k′d) can be replaced with 1/k′d. Hence the porous layer
has a very large impedance and accordingly low absorption. In other
words: substantial sound absorption cannot be achieved by just applying
some kind of paint to a wall.

(b) If the sound waves inside the porous material undergo strong attenuation
during one round trip, i.e. for γ ′d >> 1, the cotangent becomes i,
according to eqn (6.35), and the wall impedance is
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Z c
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(6.36)

Figure 6.11a shows the absorption coefficient of the layer calculated
from eqn (6.36). For high frequencies it approaches asymptotically the
value

Figure 6.11 Absorption coefficient of a porous layer (Rayleigh model) in front of
a rigid wall, normal sound incidence: (a) infinite thickness (frequency in Hz, Ξ′ in
kg m−3 s−1; (b) finite thickness (fd in Hz m), σ = 0.95. The parameter is Ξ′d/ρ0c.
(When Ξ′d/ρ0 = 0.25, the condition eqn (6.26) is only partially fulfilled.)
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Figure 6.12 Porous layer in front of a rigid wall (dotted line: distribution of
particle velocity without layer: (a) layer immediately on the wall; (b) layer at
some distance from the wall.
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(c) If, however, γ ′d << 1, i.e. for small attenuation inside the material, the
periodicity of the trigonometric functions in eqn (6.35) will dominate
in the frequency dependence of the cotangent, and the same holds for
that of the absorption coefficient represented in Fig. 6.11b. The latter
has a maximum whenever β′d equals π/2 or an odd multiple of it, i.e.
at all frequencies for which the thickness d of the layer is an odd integer
of λ′/4, with λ′ = 2π /β′ denoting the wavelength inside the material. For
higher values of Ξ′d the fluctuations fade out. As a figure-of-merit we
can consider (fd)0.5, i.e. the value of the product fd for which the
absorption coefficient exceeds 0.5. Its minimum value is (fd)0.5 = 24
which is achieved for Ξ′d/ρ0c = 6.

If we want a high absorption coefficient at low frequencies, we do not
necessarily need a thick porous layer. The only essential thing is that there
is a porous sheet with a sufficiently high flow resistance at a distance in
front of a rigid wall which, at the interesting frequencies, amounts to about a
quarter wavelength; between the porous layer and the wall there may simply
be air. If we only have thin sheets of absorbent material at our disposal, it
is better to mount them at a certain distance from the wall (Fig. 6.12b) than
directly onto the wall (Fig. 6.12a). This saving in material is offset by an
absorption coefficient which decreases at higher frequencies. In the limiting
case of vanishingly thin absorbent sheets we ultimately arrive at the stretched
fabric which we have already dealt with in Section 2.4.

In the ideal Rayleigh model with rigid channel walls, which we have been
discussing, there is no lateral coupling. A surface perpendicular to the chan-
nel axes therefore has a wall impedance which is independent of the angle
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of sound incidence. Its absorption coefficient at oblique incidence can be
calculated from its impedance by eqn (2.16). Real absorbent materials
behave differently in this respect, at least in principle, since their internal
channels run in all directions and are interconnected by a great many side
branches, thus effecting lateral coupling at oblique incidence. Only at low
frequencies this coupling is negligible because of the high attenuation per
wavelength γ ′/β′ in this range according to eqn (6.31).

We want to emphasise here that the Rayleigh model, even at normal
sound incidence, is only useful for a qualitative understanding of the effects
in a porous material but not for a quantitative calculation of the acoustical
properties of real absorbent materials. The assumed rigidity of its skeleton
is a simplification which is not entirely justified in practice. Furthermore,
these materials do not contain well separated and distinguishable channels
but rather irregularly shaped cavities which are mutually connected. The
pores or channels are often so narrow that there must surely be some heat
exchange between the air contained in the channels and the walls. There-
fore the changes of state of the air occur neither adiabatically nor according
to an isothermal law but somehow in between these limiting cases which
causes an additional complication. In the past attempts have been made to
take these effects, which are not covered by the simple Rayleigh model, into
account by introducing a ‘structure factor’ which can, however, only be
evaluated experimentally. From a practical point of view it therefore seems
more advantageous to omit such a sophisticated treatment and to deter-
mine the absorption coefficient by measurement. This procedure is recom-
mended all the more because the performance of porous absorbers depends
only partially on the properties of the material and to a greater extent on its
arrangement, on the covering and on other constructional details, which
vary substantially from one situation to another.

When porous absorbent materials are used for reducing the reverbera-
tion time of a room, it will usually be necessary to cover these materials in
some way on the side exposed to the room. Many of these materials will in
the course of time shed small particles which must be prevented from pol-
luting the air in the room. If the absorbent portions of wall are within the
reach of people, a suitable covering is desirable too as a protection against
unintentional thoughtless damage of the materials which are not usually
very hard wearing. And, finally, the architect usually wishes to hide the
rock wool layer which is not aesthetically pleasing behind a surface which
can be treated according to his wishes. Very often, thin and highly perfor-
ated or slotted panels of wood, metal or gypsum board are employed for
this purpose. Their surfaces can be painted and cleaned from time to time;
however, care must be taken that the openings are not blocked.

To prevent purling (or to keep water away from the pores, as for in-
stance in swimming baths) it is sufficient to bag the absorbent materials in
very thin plastic foils. Furthermore, purling can be avoided by a somewhat
denser porous front layer on the bulk of the material.
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According to Section 6.3, foils, as well as perforated or slotted panels,
have a certain sound transmissibility which may be close to unity at low
frequencies and which is identical to the absorption coefficient in eqn (6.4).
It would be wrong, however, to calculate the absorption of the combina-
tion of porous material plus covering by multiplying the absorption coeffi-
cient of the uncovered layer by the transmissibility of the covering. Instead
one has to add the wall impedance iωM of the perforated panel or of the
foil to the impedance of the porous layer. The resulting impedance can be
better matched in certain frequency ranges to the characteristic impedance
of the air, in which case the absorption is increased by the covering. This
will occur if the wall impedance of the uncovered arrangement has a negat-
ive imaginary part, i.e. if the distance between the surface of the porous
layer and the rigid wall behind it is less than a quarter wavelength. The
added mass reduces this imaginary part and this results in a higher absorp-
tion coefficient according to Fig. 2.2, the absorbent layer having been
changed into a resonance absorber as discussed in Section 6.4.

We close this section by presenting a few typical results as measured in
the reverberation chamber, i.e. at random sound incidence. This method
will be described in more detail in Section 8.8. Although being very useful, it
has the pecularity that the results it yields for highly absorptive test samples
are occasionally in excess of unity, although absorption coefficients beyond
1 are physically meaningless.

In Fig. 6.13 the absorption coefficient of two homogeneous rock wool
layers, which are 50 mm thick, is shown as a function of the frequency.
Both materials differ in their densities and hence in their flow resistances.
Obviously the denser material exhibits an absorption coefficient close to 1
even at lower frequencies.

Figure 6.14 shows the absorption coefficient of a porous sheet with 30 mm
thickness and a density of 46.5 kg/m3 which is mounted directly in front of
a rigid wall in the first case; in the other case there is an air space of 50 mm
between the sheet and the wall. The latter is partitioned off by wooden
lattices with a pattern of 50 cm × 50 cm. Evidently, the air space achieves a
significant shift of the steep absorption increase towards lower frequencies.
Thus an air space behind the absorbent material considerably improves its
effectiveness or helps to save material and costs.

The influence of a covering is demonstrated in Fig. 6.15. In both cases
the porous layer has a thickness of 50 mm and is mounted directly onto the
wall. The fraction of hole areas, i.e. the perforation, is 14%. The mass load
corresponding to it is responsible for an absorption maximum at 800 Hz
which is not present for the bare material. This shift of the absorption to
lower frequencies can sometimes be very desirable. It must be paid for,
however, by a loss of absorption at higher frequencies. At a higher degree
of perforation this influence is much less pronounced, and with a perfora-
tion of 25% or more the effect of the covering plate can virtually be
neglected.



Sound absorption and sound absorbers 173

Figure 6.13 Absorption coefficient of rock wool layers of 50 mm thickness,
mounted immediately on concrete (random incidences): (a) density 40 kg/m3,
12.7 Rayl/cm; (b) density 100 kg/m3, 22 Rayl/cm.

6.7 Audience and seat absorption

The purpose of most medium to large size halls is to accommodate a large
number of spectators or listeners and thus enable them to watch events or
functions of common interest. This is true for concert halls and lecture
rooms, for theatres and opera houses, for churches and sports halls, cinemas,
council chambers and entertainment halls of every kind. The important
acoustical properties are therefore those which are present when the rooms
are occupied or at least partially occupied. These properties are largely
determined by the audience itself, especially by the sound absorption effected
by the people or, strictly speaking, by their clothing. The only exceptions
are broadcasting and television studios, which are not intended to be used
with an audience present, and certain acoustical measuring rooms.

The absorption effected by an audience is due mainly to people’s clothing
and its porosity. Since clothing is not usually very thick, the absorption is
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Figure 6.14 Absorption coefficient of rock wool layer of 30 mm thickness and
density 46.5 kg/m3 (12 Rayl/cm), random incidence: (a) mounted immediately on
concrete; (b) mounted 50 mm distant from concrete rear wall, air space laterally
partitioned.

considerable only at medium and high frequencies; in the range of low
frequencies it is relatively small. Since people’s clothing differs from indi-
vidual to individual, only average values of the audience absorption are
available and it is quite possible that these values are changing with the
passage of time according to changing fashion or season. Furthermore,
audience absorption depends on the kind of seats and their arrangement,
on the occupancy density, on the way in which the audience is exposed to
the incident sound, on the interruption of ‘blocks’ by aisles, stairs, etc., and
not least on the structure of the sound field. It is quite evident that a person
seated at the rear of a box with a small opening, as was typical in 18th- to
19th-century theatres, absorbs much less sound energy than a person sitting
among steeply raked rows of seats and who is thus well exposed to the
sound. Therefore it is not surprising that there are considerable differences
in the data on audience absorption which have been given by different
authors.
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Figure 6.15 Absorption coefficient of 50 mm glass wool, mounted immediatley on
concrete (random incidence): (a) uncovered; (b) covered by a panel of 5 mm
thickness, perforated at 14%.

There are two ways to determine experimentally the sound absorption of
audience and seats. One is to place seats and/or persons into a reverbera-
tion chamber and evaluate their absorption from the change in reverbera-
tion time they cause. This has the advantage that sound field diffusion
which is a prerequisite for the applicability of the common reverberation
formulae can be established by adequate means. On the other hand, it may
be doubtful whether a ‘block’ consisting 20 or 25 seats is representative for
an extended area covered with occupied or unoccupied seats. In the second
method, completed concert halls are used as reverberation chambers, so to
speak: the absorption data are derived from reverberation times measured
in them. The structure of the sound field is unknown in the second method,
but – provided the shape of the hall is not too unusual – it can at least be
considered as typical for such halls.

The absorption of persons standing singly or seated is characterised most
appropriately by their absorption cross-section or absorption area A,
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Table 6.2 Absorption areas of single persons (in m2)

Type of person Frequency (Hz)

125 250 500 1000 2000 4000

Male standing in heavy coat 0.17 0.41 0.91 1.30 1.43 1.47
Male standing without coat 0.12 0.24 0.59 0.98 1.13 1.12
Musician sitting with instrument 0.60 0.95 1.06 1.08 1.08 1.08
(after Kath and Kuhl3)

already defined in eqn (6.13) in Section 6.5. The absorption area of each
person is added to the sum of eqn (5.23a), which in this case reads

    
n    = +
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S N Ai i
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α p (6.38)

Np being the number of persons.
Table 6.2 lists some absorption areas as a function of the frequency

measured by Kath and Kuhl3 in the reverberation chamber.
When people are seated close together (which is usual in occupied rooms)

it seems to be more correct4 to relate the absorption of audience and areas
covered with equal chairs, not to the number of ‘objects’ but to their area,
i.e. to characterise it by an apparent absorption coefficient, since this figure
seems to be less dependent on the density of chairs or listeners. In Table 6.3
absorption coefficients of seated audience and of unoccupied seats as meas-
ured in a reverberation chamber are listed. Although the absorption of an
audience in a particular hall may be different from the data shown, the
latter demonstrate at least the general features of audience absorption:
at increasing frequencies the absorption coefficients increase at first. For
frequencies higher than 2000 Hz, however, they decrease. This decrease
is presumably due to mutual shadowing of absorbent surface areas; this
shadowing becomes more prominent at high frequencies because at higher
frequencies it is not overcome by diffraction around the heads, arms and
other parts of the listeners’ bodies.

The effect of upholstered chairs essentially consists of an increase in
absorption at low frequencies, whereas at frequencies of about 1000 Hz
and above there is no significant difference between the absorption of audi-
ences seated on upholstered or on unupholstered chairs.

Large collections of data on seat and audience absorption have been
published by Beranek6 and by Beranek and Hidaka,7 the latter being obvi-
ously an update of the former. These authors determined absorption coeffi-
cients from the reverberation times of completed concert halls using the
Sabine formula, eqn (5.24) with (5.23a). It should be emphasised that their
calculations are based upon the ‘effective seating area’ Sa which includes



Sound absorption and sound absorbers 177

not only the floor area covered by chairs but also a strip of 0.5 m around
the actual area of a block of seating except for the edge of a block when it
is adjacent to a wall or a balcony face. This correction is to account for the
so-called ‘edge effect’, i.e. diffraction of sound which generally occurs at
the edges of an absorbent area (see Section 8.7). Absorption coefficients
for closed blocks of seats – unoccupied as well as occupied – are listed in
Table 6.4. The data shown are averages over three groups of halls with
different types of seat upholstery. They show the same general frequency
dependency as the absorption coefficients listed in Table 6.3 apart from the
slight decrease towards very high frequencies for occupied seats which is
missing in Table 6.4. Evidently, the influence of seat upholstery is particu-
larly pronounced in the low frequency range.

Beranek and Hidaka had the opportunity of assembling reverberation
data from several halls before the chairs were installed. From these values
they evaluated what they called the ‘residual absorption coefficients’, αr, i.e.
the total absorption for all walls, the ceiling, balcony faces, etc., except the
floor, divided by their area Sr. Since these data are interesting in their own
right we present their averages in Table 6.5. The residual absorption coef-
ficients include the absorption of chandeliers, ventilation openings and other
typical installations, and they show remarkably small variances.

It has been known for a long time that an audience does not only absorb
the impinging sound waves, thus reducing the reverberation time of the

Table 6.3 Absorption coefficients of audience and chairs
(reverberation chamber data)

Type of seats Frequency (Hz)

125 250 500 1000 2000 4000 6000

Audience seated on 0.24 0.40 0.78 0.98 0.96 0.87 0.80
wooden chairs, two
persons per m2 (Ref. 5)

Audience seated on 0.16 0.24 0.56 0.69 0.81 0.78 0.75
wooden chairs, one
person per m2 (Ref. 5)

Audience seated on 0.72 0.82 0.91 0.93 0.94 0.87 0.77
moderately upholstered
chairs, 0.85 m × 0.63 m

Audience seated on 0.55 0.86 0.83 0.87 0.90 0.87 0.80
moderately upholstered
chairs, 0.90 m × 0.55 m

Moderately upholstered 0.44 0.56 0.67 0.74 0.83 0.87 0.80
chairs, unoccupied,
0.90 m × 0.55 m
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Table 6.4 Absorption coefficients of unoccupied and occupied seating areas in
concert halls (after Beranek and Hidaka7)

Type of seats Frequency (Hz)

125 250 500 1000 2000 4000

Heavily upholstered Unoccupied 0.70 0.76 0.81 0.84 0.84 0.81
(seven halls)
Occupied 0.72 0.80 0.86 0.89 0.90 0.90
(seven halls)

Medium upholstered Unoccupied 0.54 0.62 0.68 0.70 0.68 0.66
(eight halls)
Occupied 0.62 0.72 0.80 0.83 0.84 0.85
(eight halls)

Lightly upholstered Unoccupied 0.36 0.47 0.57 0.62 0.62 0.60
(four halls)
Occupied 0.51 0.64 0.75 0.80 0.82 0.83
(six halls)

First group: 7.5 cm upholstery on front side of seat back, 10 cm on top of seat bottom, arm
rests upholstered. Second group: 2.5 cm upholstery on front side of seat back, 2.5 cm on top
of seat bottom, solid arm rests. Third group: 1.5 cm upholstery on front side of seat back,
2.5 cm on top of seat bottom, solid arm rests.

Table 6.5 Residual absorption coefficients αr from concert halls
(after Beranek and Hidaka7)

Type of hall Frequency (Hz)

125 250 500 1000 2000 4000

Group A: Halls lined with wood, less 0.16 0.13 0.10 0.09 0.08 0.08
than 3 cm thick, or with other thin
materials (six halls)

Group B: Halls lined with heavy 0.12 0.10 0.08 0.08 0.08 0.08
material i.e. with concrete, plaster
more than 2.5 cm thick etc.
(three halls)

room, but it also attenuates the sound waves propagating parallel to the
audience. About the same holds for unoccupied seats. Attenuation in excess
of the 1/r-law of eqn (1.19) or (1.21) is actually observed whenever a wave
propagates along an absorbent surface and may be attributed to some sort
of refraction which partially directs the sound wave into the absorbent
material.

A characteristic phenomenon which has been observed by many re-
searchers8,9 at grazing sound incidence on empty chairs in large halls is the
‘seat dip effect’, i.e. a maximum of the excess attenuation occurring in the



Sound absorption and sound absorbers 179

Figure 6.16 Transmission characteristics of the direct sound, measured at various
seats of the main floor in the Boston Symphony Hall.8 The numbers in the figure
indicate the distance from the stage.

range of 80 to 200 Hz, depending on the angle of sound incidence and
other parameters. An example is shown in Fig. 6.16, for which the attenu-
ation due to spherical divergence has been subtracted from the data. The
minimum in these curves is usually attributed to a vertical λ/4-resonance of
the space between seating rows. Some authors have found a seat dip also
with occupied seats, others have not. Figure 6.17 presents the excess sound
pressure levels over occupied seats as a function of the frequency as meas-
ured by E. Mommertz10 in a large hall with horizontal floor by employing
maximum length sequence techniques (see Section 8.2). The figures indicate
the number of the row where the microphone was located. An evaluation of
these data shows that there is a linear level decrease from front to rear seats,
indicating an excess attenuation of the audience of roughly 1 dB/metre in
the range 500–2000 Hz. It should be noted that not only the direct sound
but also reflections from vertical side walls are subject to this kind of excess
attenuation.

The selective attenuation cannot be considered as an acoustical fault
since it takes place in good concert halls as well as in poorer ones (except,
of course, in the very first seating rows of main floors and balconies).
Obviously it is not the spectral composition of the direct sound and of the
side wall reflections which is responsible for the tonal balance but rather
that of all contributions to the intensity at the listeners’ ears.

Listening conditions will be impaired, however, if the sight lines from the
listeners to the sound source are obscured by the heads of other listeners
sitting in front of them or by other obstacles. Therefore it is important that
the seats are arranged in such a way that the listeners are freely exposed to



180 Room Acoustics

S
ou

nd
  p

re
ss

ur
e 

le
ve

l
20

 d
B

2

4

6

8

10

12

14

1 2 5 10

Frequency (kHz)

Figure 6.17 Sound pressure level over audience, relative to level at free
propagation (horizontal lines). The figures denote the number of the seating row.
The source is 2.5 m from the first row and 1.4 m high (after Mommertz10).

the direct sound and to the reflections arriving from the side walls (see also
Sections 9.1 and 9.2).

6.8 Miscellaneous objects (freely hanging fabrics,
pseudostochastic diffusers, etc.)
The first ‘sound absorber’ to be discussed in this section is a plane curtain
of flexible and porous material in a room, well away from all its walls. Its
acoustical properties are characterised by its flow resistance rs and its mass
Ms per unit area. These quantities are combined in Zr which is defined as

    
Z

p p

v
r

s

  
  

=
− ′

(6.39)

similar to the definition of flow resistance in eqn (2.17). p − p′ is the differ-
ence of sound pressures on both sides of the layer, and vs denotes the
particle velocity on its surface and perpendicular to it.
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On the side of sound incidence, the sound pressure is S0(1 + R), accord-
ing to eqns (2.11a) and (2.12a) (with x = y = 0). On the opposite side, the
sound pressure is S0T which at the same time defines the ‘transmission
factor’ T; S0 denotes the sound pressure amplitude of the incident wave.
The normal component of the particle velocity is vs = S0(1 − R) cos Θ/ρ0c and,
at the same time, vs = S0T cos Θ/ρ0c, where Θ denotes the angle of sound
incidence. Equating both expressions leads to

T = 1 − R

while introducing vs and p − p′ into eqn (6.39) yields
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From both these relations the reflection factor R and the transmission fac-
tor T can be evaluated:
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and
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In these formulae we changed from the impedance Zr to the specific imped-
ance ζr = Zr /ρ0c.

In contrast to the situation considered in Section 6.3, the curtain is not a
boundary of the room. Therefore, the sound energy transmitted through it
cannot be considered as lost or as ‘absorbed’. Hence the energy absorbed
within the curtain is obtained by subtracting it as well as the reflected
sound energy from the incident one. Therefore we have to apply

α = 1 − | R |2 − | T |2

instead of eqn (2.1) This yields, after inserting eqns (6.40) and (6.41)
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Figure 6.18 Absorption coefficient of freely hanging curtain, random sound
incidence: (a) as a function of the frequency, parameter is rS/ρ0c; (b) high
frequency limit as a function of rS/ρ0c.

Next we have to average eqn (6.42) over all incidence angles θ according to
eqn (2.41). Since the last expression in eqn (6.42) is similar to eqn (2.16)
we can immediately adopt eqn (2.42) as the result of this averaging by
replacing the factor 8 with a factor 4, Re(ζ) with Re(ζr)/2, and | ζ | with
| ζr |/2. The angle µ remains unaltered. Therefore the absorption coefficient
of the curtain for random sound incidence reads:
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In Figure 6.18a, αuni of the curtain is plotted as a function of the frequency
parameter F/Fs for various values of the flow resistance rs. Far below the
characteristic frequency Fs = rs/2πMs (see eqn 2.17a) the absorption of the
layer is very small since at these frequencies the layer follows nearly com-
pletely the vibrations imposed by the sound field. With increasing frequency,
the inertia of the layer becomes more relevant, leading to an increasing
motion of the air relative to the curtain. For high frequencies the layer
stays practically at rest, and the absorption coefficient become frequency
independent. This limiting value is plotted in Fig. 6.18b as a function of
the the flow resistance rs. It has a maximum of α uni = 0.446 occurring at
rs = 3.136ρ0c. This discussion shows that freely hanging curtains or large
flags, etc. freely hanging in the room may considerably add to the absorp-
tion in it and may be used to control its reverberation.
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The second object considered in this section is pseudostochastic dif-
fusers. As mentioned by the end of Section 2.6, such devices show notice-
able sound absorption even if they are manufactured from virtually loss-free
materials. Recently such diffusers have been installed in several halls –
mostly in form of QRD diffusers – and since possibly more halls will be
equipped with them, the physical reasons for this absorption will be briefly
discussed in this section.

The absorption of Schroeder diffusers was observed in 1992 by Fujiwara
and Miyajima.11 These authors found that the absorption of such diffusers
could be reduced but not removed by careful surface treatment. In Fig. 6.19
the absorption coefficient of a QRD diffuser with a design frequency of
285 Hz is plotted. Being negligible at low frequencies, it shows a marked
rise well below the design frequency and remains at a relatively high level
although its value has several distinct maxima.

This effect can be explained by the fact13,14 that, according to the simpli-
fied theory presented above, the waves reflected at the inner end of the
troughs would cause abrupt phase jumps between adjacent openings. Such
jumps are physically impossible; instead, any pressure differences will pro-
duce local air flows between the channel entrances which tend to equalise
the pressure differences. These equalising flows may reach relatively high

Figure 6.19 Absorption of a quadratic residue diffuser (QRD) with N = 7 (see
Fig. 2.17), made of aluminium (after Fujiwara12).
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velocities which are not associated with far field radiation but which lead to
additional viscous and thermal losses in the channels. As pointed out by
Mechel,15 additional losses are due to the fact that the local flows are forced
to go around the sharp edges of adjacent troughs.

As was shown both by Fujiwara12 and by Mechel,15 surprisingly high
absorptivities are not a peculiarity of pseudostochastic structures as dis-
cussed above but occur for any collection of wells or tubes with different
lengths the openings of which are close to each other.

This leads us to the last ‘absorbing’ devices to be mentioned in this
section namely to pipe organs which show remarkable sound absorption
although no porous materials whatsoever are used in their construction.
According to J. Meyer (see Ref. 6 of Chapter 1) the absorption coefficient
of an organ, related to the area of its prospect, is as high as about 0.55 to
0.60 in the frequency range from 125 to 4000 Hz and has at least some
influence on the reverberation time of a concert hall or a church.

6.9 Anechoic rooms

In the acoustical design of rooms, sound absorbers mounted on walls and
ceilings are usually employed to meet one of the following objectives:

• to adapt the reverberation of the room, for instance of a concert hall,
to the type of performances which are to be staged in it;

• to suppress sound reflections from remote walls which might be heard
as echoes;

• to reduce the acoustical energy density and hence the sound pressure
level in noisy rooms such as factories, for instance.

All these goals can be reached by sound absorbers of the kind described so
far, although the elimination of echoes may require particular care, espe-
cially when the echo-producing wall shows a concave curvature. Matters
are different for spaces which are intended for certain acoustical free field
measurements such as the calibration of microphones or the determination
of directional patterns of sound sources, etc. The same holds for psycho-
acoustic experiments. In all these cases the accuracy and the reliability of
results would be impaired by the interference of the direct sound with
sound components reflected from the boundaries.

One way to avoid reflections – except that from the ground – would be
to perform such measurements or experiments in the open air. It has the
disadvantage, however, that the experimenter depends on favourable weather
conditions, which implies not only the absence of rain but of wind too.
Furthermore, acoustic measurements in the open air can be affected by
ambient noise.

A more convenient way is to use a so-called anechoic room or chamber,
all boundaries of which are treated in such a way that virtually no sound
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reflections are produced by them, at least in the frequency range of interest.
How stringent the conditions are which have to be met by the acoustical
treatment may be illustrated by a simple example. If all boundaries of an
enclosure have an absorption coefficient of 0.90, everybody would agree
that the acoustics of this room is extremely ‘dry’ on account of its very low
reverberation time. Nevertheless, the sound pressure level of a wave re-
flected from a wall would be only 10 dB lower than that of the incident
wave! Therefore the usual requirement for the walls of an anechoic room is
that the absorption coefficient is at least 0.99 for all angles of incidence.
This requirement cannot be fulfilled with plane homogeneous layers of
absorbent material; it can only be satisfied with a wall covering which
achieves a stepwise or continuous transition of the characteristic impedance
from that of the air to that of a highly lossy material.

In principle, this transition can be accomplished by a porous wall coating
whose flow resistance increases in a well-defined way from the surface to
the wall. It must be expected, however, that, at grazing sound incidence,
the absorption of such a plane layer would be zero on account of total
reflection. According to eqn (2.14b), the reflection factor becomes −1 when
θ approaches 90°. Therefore it is more useful to achieve the desired transition
by choosing a proper geometrical structure of the acoustical treatment than
by varying the properties of the material. This can be achieved by pyramids
or wedges of absorbent material which are mounted onto the walls. An
incident sound wave then runs into channels with absorbent walls whose
cross-sections steadily decrease in size, i.e. into reversed horns. The aper-
tures at the front of these channels are very well matched to the character-
istic impedance of the air and thus no significant reflection will occur.

This is only true, however, as long as the length of the channels, i.e. the
thickness of the lining, is at least about one-third of the acoustical wave-
length. This condition can easily be fulfilled at high frequencies, but only
with great expense at frequencies of 100 Hz or below. For this reason every
anechoic room has a certain lower limiting frequency, usually defined as
the frequency at which the absorption coefficient of its walls becomes less
than 0.99.

As to the production of such a lining, it is easier to utilise wedges instead
of pyramids. The wedges must be made of a material with suitable flow
resistance and sufficient mechanical solidity, and the front edges of neigh-
bouring wedges or packets of wedges must be arranged at right angles to
each other.

Since the floor, as well as the other walls, must be treated in the way just
described, a net of steel cables or plastic wires must be installed in order to
give access above the floor of the room. The reflections from this net can be
safely neglected at audio frequencies.

The lower limiting frequency of an anechoic room can be further reduced
by combining the pyramids or wedges with cavity resonators which are
located between the latter and the rigid wall.16 By choosing the apertures and
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the depths of the resonators carefully, the reflection can be suppressed at fre-
quencies at which substantial reflection would occur without the resonators.

In this way, for a particular anechoic room,17 a lower limiting frequency of
80 Hz was achieved by lining to a total depth of 1 m. The absorber mater-
ial has a density of 150 kg/m3 and a flow resistance of about 105 kg/m3 s. It
is fabricated in wedges of 13 cm × 40 cm base area and 80 cm length, which
terminate in rectangular blocks of the same base area and 10 cm length.
Between these blocks there are narrow gaps of 1 cm width which run into
an air cushion of 10 cm depth between the absorber material and the con-
crete wall (see Fig. 6.20). The latter acts as a resonator volume, the necks of
which are the gaps between the wedges. Three wedges with parallel edge
are joined together in a packet; neighbouring packets are rotated by 90°
with respect to each other. A view of the interior of this anechoic room is
presented in Fig. 6.21.

Another way of achieving a continuous transition towards the wall is to
string dense rock wool cubes of increasing size onto wires – like strings of
pearls. These wires are stretched in parallel planes in front of the wall.18

Next to the wall, the cubes merge to form closed layers of rock wool. At
the ceiling the absorbent cubes are strung onto wires suspended from the
ceiling and, similarly, at floor level they are pushed onto steel rods in
a specific way and at prefixed distances. This arrangement seems to be

Figure 6.20 Absorbing wall lining of an anechoic room (dimensions in cm).



Sound absorption and sound absorbers 187

advantageous especially for sound at grazing incidence, since the fraction
which is not absorbed is scattered uniformly rather than reflected in certain
directions.

Anechoic rooms are usually checked by observing the way in which the
sound amplitude decreases when the distance from a sound source is in-
creased. This decrease should take place according to a 1/r law to simulate
perfect outdoor conditions. In practice, with increasing distance, deviations
from this simple law become more and more apparent in the form of ran-
dom fluctuations. Since these fluctuations are caused by wall reflections,
they can be used to evaluate the average absorption coefficient of the walls.
Several methods have been worked out to perform these measurements and
to determine the wall absorption from their results.19,20
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7 Characterisation of
subjective effects

The preceding chapters were devoted exclusively to the physical side of
room acoustics, i.e. the objectively measurable properties of sound fields in
a room and to the circumstances which are responsible for their origin. We
could be satisfied with this aspect if the only problems at stake were those
of noise abatement by reverberation reduction and hence by reduction of
the energy density, or if we only had to deal with problems of measuring
techniques, which will be discussed in more detail in Chapter 8.

In most cases, however, the ‘final consumer’ of acoustics is the listener
who wants to enjoy a concert, for example, or who attends a lecture or a
theatre performance. This listener does not by any means require the rever-
beration time, at the various frequencies, to have certain values; neither
does he insist that the sound energy at his seat should exhibit a certain
directional distribution. Instead he expects the room with its ‘acoustics’ to
support the music being performed or to render speech easily intelligible (as
far as this depends on acoustic properties). This is true not only in the case
of listeners who are personally present in the room under consideration but
also when the sounds are transferred to another room, as for instance in
broadcasting. Similarly, it does not matter whether the perceived sounds
originate from the lips of an orator or from the membrane of a loudspeaker
as long as the latter does not attract the listener’s attention because of poor
tonal quality or other undesirable effects.

Hence we must now focus our attention on the question as to which
properties of the sound field are related to certain hearing impressions:
whether and how a particular reflection will be perceived, which values of
reverberation times at various frequencies are preferable for a particular
kind of performance, and which other physical parameters may influence
the listener’s impression of the acoustics of a room in one way or another.
With these considerations we leave the region of purely physical fact and
enter the realm of psychoacoustics.

The previously mentioned questions and similar problems have in the past
been the subject of numerous investigations – experimental investigations –
since answers to these problems, which are not affected by the stigma of
pure speculation, can only be obtained by experiments. Unfortunately their
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results do not form an unequivocal picture, in contrast to what we are
accustomed to in the purely physical branch of acoustics. This is ascribed to
the very involved physiological properties of our hearing organ but perhaps
even more to the manner in which hearing sensations are processed by our
brain; it can also be attributed to our hearing habits and, last but not least,
to the personal aesthetic sensitivity of the listener – at least as far as musical
productions are concerned. Another reason for our incomplete knowledge
in this field is the great number of sound field components, which all may
influence the subjective hearing impression. The experimental results which
are available to date must therefore be considered in spite of the fact that
many are unrelated or sometimes even inconsistent, and that every day new
and surprising insights into psychoacoustic effects and their significance in
room acoustics can be found.

There are basically two methods which are employed for investigating
the subjective effects of complex sound fields, namely to synthesise sound
fields with well-defined properties and to have them judged by test subjects,
and to judge directly the acoustical qualities of completed halls, the objective
properties of which are known from previous measurement. Each of these
methods has its own merits and limitations, and each of them has contrib-
uted to understanding. The synthesis or laboratory simulation of sound
fields permits easy and rapid variations of sound field parameters and the
immediate comparison of different field configurations. It is not free, how-
ever, from a somewhat artificial character in that it is impossible to simu-
late sound fields of real halls in their full complexity. Instead certain
simplifications have to be made which restrict the application of this method
to the investigation of articular aspects.

As with any psychoacoustic experiments, systematic listening tests with
synthetic sound fields are very time-consuming, and the quality of their
results depends a good deal on the experience and goodwill of the test
subjects and on the instructions given to them prior to the tests.

The direct judgement of real halls leads to relatively reliable results if
speech intelligibility is the only property in question since the latter can
be determined by special objective tests (see Section 7.4). The subjective
assessment of the acoustics of concert halls or opera theatres, however,
is affected by great uncertainties, one of which is the limited memory
which impedes the direct comparison of different halls. Furthermore, two
halls differ invariably in more than one respect which makes it difficult
to correlate subjective opinions with one particular property such as, for
instance, reverberation time. Nevertheless, many important facts have
become known in the course of time just by interviewing many concert or
opera goers.

Moreover, the immediate comparison of aural impressions from different
halls has been greatly improved by progress in sound reproduction and
signal processing techniques. They allow music samples played and recorded
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in different places to be reproduced with high fidelity. For this purpose it is
not sufficient that all electro-acoustic components, such as microphones,
recorders and loudspeakers, are of excellent quality. Of equal importance is
that the system is capable of transmitting and reproducing all effects brought
about by the complex structure of the original sound field. This is achieved
by a system which exactly transplants the signals, which the original sound
field would produce at both ears of a listener, to the ears of a remote
listener.

As a first step, the signals in the original room must be recorded by a
dummy head, i.e. by an artificial head with microphones built into the
artifical ear channels. It is important that the dummy head which usually
includes body and shoulders diffracts the arriving sound waves in a way
which is representative for the majority of human listeners.1 Nowadays,
several types of dummy heads are available which meet this requirement.
An example is shown in Fig. 7.1. The signals recorded in this way are
stored using a digital tape recorder or another storage medium.

Equally important is the correct reproduction of the recorded and stored
ear signals. In principle, high quality headphones could be used for this
purpose. Unfortunately, this kind of reproduction is often plagued by ‘in-
head-localisation’, i.e. for some reason the listener has the impression that
the sound source is located within the rear part of his head. The problem
with loudspeaker reproduction, on the other hand, is that without particu-
lar preventive measures the right-hand loudspeaker will inevitably send a
cross-talk signal to the left ear and vice versa. This can be avoided by a
filter which ‘foresees’ this effect and adds proper cancellation signals to
the input signals. This technique, nowadays referred to as ‘cross talk
cancellation’ (CTC), was invented and first demonstrated by Atal and
Schroeder.2 Fig. 7.2 depicts the principle of CTC. A more detailed descrip-
tion of it may be found in Ref. 3.

In this way, a listener can immediately compare music motifs which have
been recorded in different halls or at different places in one hall. Moreover,
these techniques can be used to create realistic listening impressions from
models of auditoria which are still under design. And finally, by using such
a system the acoustics of completely hypothetical enclosures can be judged
and compared with those of existing environments. As will be described in
Section 9.7, the sound propagation in a room with given or assumed geo-
metrical and acoustical data can be simulated and represented by binaural
impulse responses. Once the impulse response for a particular listening
position has been evaluated, a digital filter with exactly that response can
be established and used to modify applied sound signals in the same way as
the assumed room would modify them. Hence, these techniques are useful
not only to learn more about the subjective effects of constructional fea-
tures (reverberation, volume, ceiling height, etc.) but also as a valuable tool
in the acoustical design of auditoria.
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Figure 7.1 Dummy head (Institute of Technical Acoustics, Aachen, Germany).
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Figure 7.2 Principle of cross-talk cancellation in loudspeaker reproduction of
binaural signals. F and F′ are digital filters.

7.1 Some general remarks on reflections and echoes

In the following discussion we shall regard the sound transmission between
two points of a room as formally represented by the impulse response of
the transmission path. According to eqn (4.4), this impulse response is
composed of numerous repetitions of the original sound impulse as it is
generated by the sound source. Since our hearing is sensitive to the direc-
tion of sound incidence, this description has to be completed by indicating
the direction from which each repetition will arrive at the receiving point.
As already mentioned in Section 4.1, the various components of the
impulse response are not exact replicas of the original sound signal, strictly
speaking, because of the frequency dependence of the wall reflectivities.
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In the following two sections this fact will be disregarded, as has been done
in eqn (4.4).

There are two experiences of the subjective effect of reflected portions of
sound which are familiar to everyone: under certain conditions such a re-
flection can become a distinct ‘echo’. In that case it is heard consciously as
a repetition of the original signal. This can frequently be observed outdoors
with sound reflections from the walls of houses or from the edge of forests.
In closed rooms such experiences are less familiar, since the echoes in them
are fortunately usually masked by the general reverberation of the room.
Whether a reflection will become an echo or not depends on its delay with
respect to the direct sound, on its relative strength, on the nature of the
sound signal, and on the presence of other reflections which eventually
mask the reflection under consideration.

The second common experience concerns our ability to localise sound
sources in closed rooms. Although in a room which is not too heavily
damped the sum of all reflected sound energies is mostly a multiple of the
directly received energy, our hearing can usually localise the direction of
the sound source without any difficulty. Obviously it is the sound signal to
reach the listener first which subjectively determines the direction from
which the sound comes. This fact is called – according to L. Cremer – the
‘law of the first wave front’. In Section 7.3 we shall discuss the conditions
under which it is valid.

In the following sections the subjective effects of sound fields with
increasing complexity will be discussed. It is quite natural that the criteria
of judgement become less and less detailed: in a sound field consisting
of 1000 reflections we cannot investigate the effects of each reflection
separately.

Many of the experimental results to be reported on have been obtained
with the use of synthetic sound fields, as mentioned earlier: in an anechoic
chamber the reflections, as well as the direct sound, are ‘simulated’ by
loudspeakers which have certain positions vis-à-vis the test subject; these
positions correspond to the desired directional distribution. The differences
in the strengths of the various reflections are achieved by attenuators in the
electrical lines feeding the loudspeakers, whereas their mutual delay differ-
ences are produced by electrical delay units. When necessary or desired,
reverberation with prescribed properties can be added to the signals. For
this purpose signals are passed through a so-called reverberator, which is
also most conveniently realised with digital methods nowadays. (Other
methods of reverberating signals will be mentioned in Section 10.5.) A
typical setup for psychoacoustic experiments related to room acoustics is
sketched in Fig. 7.3; it allows simulation of the direct sound, two side wall
reflections and one ceiling reflection. The reverberated signal is reproduced
by four additional loudspeakers. A more complete and flexible loudspeaker
arrangement for similar purposes was shown in Fig. 6.21.



Characterisation of subjective effects 195

Fi
gu

re
 7

.3
Sc

he
m

at
ic

 r
ep

re
se

nt
at

io
n 

of
 s

im
ul

at
io

n 
of

 s
ou

nd
 fi

el
ds

 i
n 

an
 a

ne
ch

oi
c 

ro
om

. 
T

he
 l

ou
ds

pe
ak

er
s 

ar
e

de
no

te
d 

D
=

di
re

ct
 s

ou
nd

, 
S

=
si

de
 w

al
l 

re
fle

ct
io

ns
, 

C
=

ce
ili

ng
 r

efl
ec

ti
on

s 
(e

le
va

te
d)

, 
R

=
re

ve
rb

er
at

io
n 

(a
ft

er
R

ei
ch

ar
dt

 a
nd

 S
ch

m
id

t4 ).



196 Room Acoustics

7.2 The perceptibility of reflections

In this and the next section we consider impulse responses with a very
simple structure: they consist of the direct sound component and only a few
or even one repetition of it. There are two questions which can be raised in
this case, namely:

(1) Under what condition is a reflection perceivable at all, without regard
to the way in which its presence is manifested, and under what condition
is it masked by the direct sound?

(2) Under what condition does the presence of a reflection rate as a
disturbance of the listening impression?

In the present section we deal with the first question, postponing the dis-
cussion of the second one to the next section. We start with the hypothesis
that there is a threshold level separating the levels at which a reflection is
audible from those at which it is completely masked. This ‘threshold of
absolute perceptibility’ is a function not only of the time delay with respect
to the direct sound but also of the direction of its incidence (and probably
of other parameters). Through all the further discussions we assume the
listener looking into the direction of direct sound incidence.

To find this threshold two alternate sound field configurations which
differ in the presence or absence of a specified reflection are presented to
test persons who have to decide whether they notice a difference or not.
(One has to make sure, of course, that the test subjects do not know before-
hand to which configuration they are listening at a given moment.) The an-
swers of the subjects are evaluated statistically; the level at which 50% of the
answers are positive is regarded as the threshold of absolute perceptibility.

For speech with a level of 70 dB, and for frontal incidence of the direct
sound as well as of the reflected component, this threshold is

∆L ≈ −0.6t0 − 8 decibels (7.1)

where ∆L is the pressure level of the reflected sound signal relative to the
sound pressure of the direct sound and t0 is the time delay in milliseconds.
For an example take a reflection delayed by 60 ms with respect to the direct
sound. According to eqn (7.1) it is audible even when its level is lower by
40 dB than that of the direct signal.

Figure 7.4 plots for three different signals (continuous speech, a short
syllable and a white noise pulse with a duration of 50 ms) the thresholds of
absolute perceptibility of a reflection delayed by 50 ms as a function of the
angle under which the reflections arrive. (The investigated directions have
been restricted to the horizontal plane.) It is evident to which extent the
thresholds depend on the type of sound signal. In any case, however, the
masking effect of the direct sound is most pronounced at equal directions of
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both components or, in other words, our hearing is more sensitive to reflec-
tions arriving from lateral directions than to those arriving from the front
or the rear. It should be added that reflections arriving from above are also
masked more effectively by the direct sound than are lateral reflections.

If the sound signal is not speech but music, our hearing is generally much
less sensitive to reflections. This is the general result of investigations
carried out by Schubert,6 who measured the threshold with various music
motifs. One of his typical results is presented in Fig. 7.5, which plots the
average threshold taken over six different music samples. With increasing
delay time it falls much less rapidly than according to eqn (7.1); its maxi-
mum slope is about −0.13 dB/ms. As with speech, the threshold is notice-
ably lower for reflections arriving from lateral directions than with frontal
incidence. Furthermore, added reverberation renders the detection of a
reflection more difficult. Obviously reverberated sound components cause
additional masking, at least with continuous sound signals.

For more than one reflection the number of parameters to be varied
increases rapidly. Fortunately each additional reflection does not create a
completely new situation for our hearing. This is demonstrated in Fig. 7.6,
which shows the absolute threshold for a variable reflection which is added
to a masking sound field consisting of the direct sound plus one, two, three
or four reflections at fixed delay times.7 In this case all the reflections arrive
from the same direction as the direct sound. The fixed reflections are indic-
ated as vertical lines over the delay times belonging to them; their heights
are a measure of the strength of the reflections. If all the reflections – the

Figure 7.4 Threshold of absolute perceptibility of a reflection with 50 ms delay,
obtained with (a) continuous speech, (b) a short syllable, (c) noise pulses of 50 ms
duration. Abscissa is the horizontal angle at which the reflection arrives. The
direct signal arrives from the front at a level of 75 dB (after Burgtorf and
Oehlschlägel5).
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Figure 7.5 Threshold of absolute perceptibility of a delayed reflection as a
function of delay time. The threshold is an average taken over six different
music samples (frontal incidence of reflection) (after Schubert6).

Figure 7.6 Threshold of absolute perceptibility of a delayed signal (reflection)
being added to a sound field consisting of direct sound plus one, two, three or
four reflections at fixed delay times and relative levels, which are denoted by
vertical lines. The original sound signal is speech. All sound components arriving
from the front (after Seraphim7).
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fixed ones as well as the variable one – and the direct sound arrive from
different directions, the thresholds are different from those of Fig. 7.6 in
that they immediately begin to fall and then jump back to the initial value
at the delay time of one of the fixed reflections.

Apart from the thresholds of perceptibility, the differential thresholds for
reflections are also of great interest. They have been measured by Reichardt
and Schmidt4 employing test equipment similar to that shown in Fig. 7.3.
According to these authors level variations as small as about ±1.5 dB in the
level of reflections can be detected if music is used as a test signal. In
contrast, the auditive detection of differences in delay times is afflicted with
great uncertainty.

7.3 Echoes and colouration

A reflection which is perceived at all does not necessarily reach the con-
sciousness of a listener. At low levels it manifests itself only by an increase
of loudness of the total sound signal, by a change in timbre, or by an
increase of the apparent size of the sound source. But at higher levels a
reflection can be heard as a separate event, i.e. as a repetition of the original
sound signal. This effect is commonly known as an ‘echo’, as already men-
tioned in Section 7.1. But what outdoors usually appears as an interesting
experience may be rather unpleasant in a concert hall or in a lecture room
in that it distracts the listeners’ attention. In severe cases an echo may
severely reduce our enjoyment of music or impair the intelligibility of speech,
since subsequent speech sounds or syllables are mixed up and the text is
confused.

In the following the term ‘echo’ will be used for any sound reflection
which is subjectively noticeable as a temporal or spatially separated repeti-
tion of the original sound signal, and we are discussing the conditions
under which a reflection will become an echo. Thus we are taking up again
the second question raised at the outset of the foregoing section.

From his outdoor experience the reader may know that the echo pro-
duced by sound reflection from a house front, etc., disappears when he
approaches the reflecting wall and when his distance from it becomes less
than about 10 m, although the wall still reflects the sound. Obviously it is
the reduction of the delay time between the primary sound and its repeti-
tion which makes the echo vanish. This shows that our hearing has only a
restricted ability to resolve succeeding acoustical events, a fact which is
sometimes attributed to some kind of ‘inertia’ of hearing. Like the absolute
threshold of perceptibility, however, the echo disturbance depends not only
on the delay of the repetition but also on its relative strength, its direction,
on the type of sound signal, on the presence of additional components in
the impulse response and other circumstances.

Systematic experiments to find the critical echo level of reflections are
performed in much the same way as those for investigating the threshold of
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Figure 7.7 Percentage of listeners disturbed by a delayed speech signal. Speaking
rate is 5.3 syllables per second. The relative echo levels (in dB) are indicated by
numbers next to the curves (after Haas8).

absolute perceptibility, but with a different instruction given to the test
subjects. It is clear that there is more ambiguity in fixing the critical echo
levels than in establishing the absolute perception threshold since an event
which is considered as disturbing by one person may be found quite toler-
able by others.

Classical experiments of this kind were carried out as early as 1950 by
Haas8 using continuous speech as a primary sound signal. This signal was
presented by two loudspeakers: the input signal of one of them could be
attenuated (or amplified) and delayed with respect to the other.

Figure 7.7 shows one of Haas’ typical results. It plots the percentage of
subjects who felt disturbed by an echo of given relative level as a function
of the time delay between the undelayed signal (or primary sound) and the
delayed one (reflection). The numbers next to the curves indicate the level
of the artificial reflection in dB relative to that of the primary sound. The
rate of speech was 5.3 syllables per second; the listening room had a rever-
beration time of 0.8 s. At a delay time of 80 ms, for instance, only about
20% of the observers felt irritated by the presence of a reflection with a
relative level of −3 dB, but the percentage was more than 80% when the
level was +10 dB.

Analogue results have been obtained for different speaking rates or rever-
beration times of the listening room. They are summarised in Table 7.1.
The numbers in the last column denote the median values of the delay time
distributions, i.e. the delay times in milliseconds at which the curves ana-
logous to those of Fig. 7.7 cross the 50% line.

Muncey et al.9 have performed similar experiments for speech as well as
for various kinds of music. As could be expected, these investigations clearly
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Table 7.1 Critical echo delays at equal levels of direct sound and reflection
(after Haas8)

Reverberation time Speaking rate Critical delay time
of listening room (s) (syllables/s) (ms)

0 5.3 43
0.8 5.3 68
1.6 5.3 78
0.8 3.5 93
0.8 5.3 68
0.8 7.4 41

Figure 7.8 Critical echo level (re-direct sound pressure) as a function of delay
time for (a) organ music and (b) string music (after Muncey et al.9).

showed that our hearing is less sensitive to echoes in music than in speech.
The reason for this is obviously the fact that music does not have to be
‘understood’ in the same sense as speech. The annoyance of echoes in very
slow music, as for example organ music, is particularly low. In Fig. 7.8 the
critical echo level (50% level) for fast string music and organ music is
plotted as a function of time delay.

The most striking result of all these experiments can be seen most clearly
from Fig. 7.7: if the relative echo level is raised from 0 to +10 dB, there is
only a small change in the percentage of observers feeling disturbed by the
reflected sound signal. Hence no disturbance is expected to occur for a
reflection with time delay of, say, 20 ms even if its energy is ten times the
energy of the direct sound. This finding is frequently referred to as ‘Haas
effect’ and has important applications in the design of public address systems.

Careful investigations into the above-mentioned Haas effect and of re-
lated phenomena have been performed by Meyer and Schodder.10 In order
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Figure 7.9 Critical level difference between echo and undelayed signal, resulting
in apparently equal loudness of both signals (speech). Abscissa is the delay time
(after Meyer and Schodder10).

to restrict the range of possible judgements, the test subjects were not asked
to indicate the level at which they were disturbed by an echo; instead they
had to indicate the level at which they heard both the delayed signal and
the undelayed one equally loudly. Since in these tests the undelayed signal
reached the test subject from the front, the delayed one from a lateral angle
of 90°, the test subjects could also be asked to indicate the echo level at
which the sound seemed to arrive from halfway between both directions.
Both criteria of judgement led to the same results. One of them is shown in
Fig. 7.9, where the critical level difference between primary sound and
reflection is plotted as a function of the delay time. It virtually agrees with
the test results obtained by Haas and renders them somewhat more precise.
For our hearing sensation the primary sound determines the impression of
direction even when the reflection – provided it has a suitable delay time –
is stronger by up to 10.5 dB. If the reflection is split up into several small
reflections of equal strengths and with successive mutual delay times of
2.5 ms, leaving constant the total reflection energy, the curve shown in
Fig. 7.9 is shifted upwards by another 2.5 dB at maximum.

This result shows that many small reflections separated by short time
intervals of the order of milliseconds cause about the same disturbance as
one single reflection provided the total reflected energy and the (centre)
delay time are the same for both configurations.

These results can be summarised in the following statement: in room
acoustics the law of the first wave front can be considered to be valid in
general. Exceptions, i.e. erroneous localisations and reflections which are
audible as echoes, will occur only in special situations, as for example when
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most of the room boundaries, except for a few remote portions of wall, are
lined with an absorbent material or when certain portions of wall are con-
cavely curved and hence produce reflections of more than average intensity
by focusing the sound.

The superposition of a strong isolated reflection onto the direct sound
can cause another undesirable effect, especially with music, namely a
‘colouration’, i.e. a characteristic change of timbre. The same is true for a
regular, i.e. equidistant, succession of reflections.

If the impulse response g1(t) of a room were to consist only of the direct
sound and one reflection which is weaker by a factor of q,

g1(t) = δ(t) + qδ(t − t0) (7.2)

the corresponding squared absolute value of its Fourier transform is given
according to eqn (1.46a) by

|G1(f ) |2 = | 1 + q exp(2πift0) |2 = 1 + q2 + 2q cos (2πft0) (7.3)

This is the squared transfer function of a comb filter with a ratio of max-
imum to minimum of (1 + q)2/(1 − q)2; the separation of adjacent maxima is
1/t0. An infinite and regular succession of reflections would be given by
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and its squared absolute spectrum reads

|G2( f ) |2 = [1 + q2 − 2q cos (2πft0)]
−1 (7.5)

with the same distance of the maxima and the same relative ‘roughness’ as
before. However, the peaks are much sharper here than with a single reflec-
tion, except for q << 1 (see Fig. 7.10).

Whether such a comb filter – and likewise a room with similar impulse
response – will produce audible colourations or not depends on the delay
time t0 and on the relative heights of the maxima.11 The absolute threshold
for audible colourations rises as the delay time or distance t0 increases, i.e.
when the distance 1/t0 between subsequent maxima on the frequency axis is
smaller (see Fig. 7.11). This finding makes understandable why the very
high but closely spaced irregularities of room frequency curves do not cause
audible colourations.

If t0 exceeds a certain value, say 25 ms or so, the regularity of impulse
responses does not appear subjectively as colouration, i.e. of changes of the
timbre of sound, but rather the sounds have a rough character, which
means that we become aware of the regular repetitions of the signal as a
phenomenon occurring in the time domain (echo or flutter echo). This is
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Figure 7.10 Impulse responses and absolute values of transfer functions of
various comb filters (q = 0.7).

because our ear is not just a sort of frequency analyser but is also sensitive
to the temporal structure of the sound signals. Or more correctly expressed:
our hearing performs a short-time spectral analysis.

In Section 8.4 we shall discuss an objective criterion for the perceptibility
of sound colouration or of a flutter echo which is based on thresholds of
the kind shown in Fig. 7.11.

Figure 7.11 Critical values of q resulting in just audible colouration of white
noise passed through (a) comb filter according to eqn (7.3) and (b) comb filter
according to eqn (7.5) (after Atal et al.11).



Characterisation of subjective effects 205

So far this discussion has been restricted to the somewhat artificial case
that the sound field consists of the primary or direct sound followed by just
one single repetition or a regular succession of repetitions of the sound
signal. As we know from Chapter 4, however, impulse responses of most
real rooms have a much more complicated structure, and it is clear that the
presence of numerous reflections must influence the way we perceive one of
them in particular. On the other hand, from a practical point of view it
would be desirable to have a criterion to indicate whether a certain peak in
a measured impulse response or ‘reflectogram’ hints at an audible echo and
should be removed by suitable constructive measures.

The first criterion of this kind was developed by Niese.12 This author
compared the energy EE contained within the first 30 ms of a measured
impulse response g(t) with the energy ENE of all portions of [g(t)]2 for
t > 30 ms which are in excess of an idealised decay curve. From both quan-
tities he calculated the fraction

    
ε   
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+
E

E E
NE

E NE

(7.6)

which was called the ‘echo coefficient’ (originally ‘Echograd’). The idea
behind this definition is that reverberation itself is not an acoustical fault in
a room.

Another echo criterion was proposed by Dietsch and Kraak13 in 1986.
It is based on the ratio
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with g(t) denoting as before the impulse response under consideration. Here
tS(τ) is a monotonous function of τ approaching a certain limiting value
tS = tS(∞) for τ → ∞. This latter value is the first moment of [g(t)]n, and the
function tS(τ) indicates its temporal build-up (Fig. 7.12). The quantity used
for rating the strength of an echo is based upon the difference quotient of
tS(τ):

EC = maximum of 
    

∆
∆
tS( )τ

τ
(7.8)

where ∆τ can be adapted to the character of the sound signal. The depend-
ence of the echo criterion EC on the directional distribution of the various
reflections is accounted for by recording two impulse responses with a
dummy head and adding the energies of both responses.
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Figure 7.12 First 400 ms of a room impulse response, of the associated build-up
function tS(τ) and of the difference quotient ∆tS(τ)/∆τ (with ∆τ = 5 ms). EC is 2.75
in this example.
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By numerous subjective tests, both with synthetic sound fields and in real
halls, the authors referred to determined not only suitable values for the
exponent n and for ∆τ but also the critical values ECcrit, which must not be
exceeded to ensure that not more than 50% of the listeners will hear an
echo (Table 7.2). (The 10% thresholds are slightly lower.) It should be
noted that particularly high frequency spectral components may cause echo
disturbances. For practical purposes, however, it seems sufficient to employ
test signals with a bandwidth of 1 or 2 octaves.

7.4 Early energy: definition, clarity index, speech
transmission index

The occurrence of echoes is not the only factor which can impair speech
intelligibility; another one is too long a sound decay which is brought about
by the great number of sound reflections with relatively long delay times
following each other in closer and closer succession. Of course, it would be
hopeless to consider each of them separately in order to assess its effect on
the listening conditions. Instead several authors have proposed somewhat
coarser criteria which compare different parts of the impulse response with
each other in order to arrive at objective measures for the intelligibility of
speech, for the ‘clarity’ or ‘transparency’ of the perceived sounds and similar
categories. Such a procedure is not just an expedient dictated by the limita-
tions of time and facilities but is justified by the limited ability of our
hearing to distinguish all the countless repeated sound signals.

In the preceding sections it was shown that a reflection is not perceived
subjectively as something separate from the direct sound as long as its delay
and its relative strength do not exceed certain limits. Their only effect is to
make the sound source appear somewhat more extended and to increase
the apparent loudness of the direct sound. Since such reflections give sup-
port to the sound source they are considered useful.

Reflections which arrive at the listener with longer delays are noticed as
echoes in unfavourable cases; in favourable cases they contribute to the
reverberation of the room. In principle, any reverberation impairs the intel-
ligibility of speech because it blurs its time structure and mixes up the
spectral characteristics of successive phonems or syllables. More delayed
reflections are considered to be detrimental from the viewpoint of speech

Table 7.2 Characteristic data for the echo criterion of Dietsch and Kraak13

Sound signal n ∆τ (ms) ECcrit Bandwidth of test
signal (Hz)

Speech 2/3 9 1.0 700–1400
Music 1 14 1.8 700–2800
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transmission. From our everyday experience with outdoor echoes, but even
more precisely from Haas’ results (see Fig. 7.7) and similar findings, it can
be concluded that the critical delay time separating useful from detrimental
reflections is somewhere in the range from 50 to 100 ms.

Most of the following criteria compare the energy conveyed in useful
reflections, including that of the direct sound, with the energy contained in
the remaining ones. To validate them it is necessary to determine the speech
intelligibility directly. This can be done in the following way. A sequence of
meaningless syllables (so-called ‘logatoms’) is read aloud in the environ-
ment under test. To obtain representative results it is advisable to use pho-
netically balanced material (from so-called PB lists) for this purpose, i.e.
sets of syllables in which initial consonants, vowels and final consonants
are properly distributed. Listeners placed at various positions are asked to
write down what they have heard. The percentage of syllables which have
been correctly understood is considered to be a relatively reliable measure
of speech intelligibility, called ‘syllable intelligibility’.

The earliest attempt to define an objective criterion of what may be
called the distinctness of sound, derived from the impulse response, is due
to Thiele,14 who named it ‘definition’ (originally ‘Deutlichkeit’):
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Both integrals must include the direct sound. Obviously, D will be 100%
if the impulse response does not contain any components with delays in
excess of 50 ms, for instance for outdoor sound transmission.

The relation between D and the syllable intelligibility has been estab-
lished by Boré,15 who performed subjective tests in different rooms, both
with and without a public address system in operation. As test signals for
the impulse response he used tone impulses with a duration of 20 ms; the
final value of the ‘definition’ was obtained by a somewhat involved aver-
aging process over the frequency range 340–3500 Hz. The results are shown
in Fig. 7.13; they indicate that there is indeed a good correlation between
the intelligibility and the ‘definition’ D.

A quantity which is formally similar to ‘definition’ but intended to char-
acterise the transparency of music in a concert hall is the ‘clarity index’
C (originally ‘Klarheitsmaß’) as introduced by Reichardt et al.16 It is
defined by

      

C

g t t

g t t

  log

[ ( )]

[ ( )]

 

 

=



















∞10 10
0

80

2

80

2

�
�

ms

ms

d

d

dB (7.10)



Characterisation of subjective effects 209

Figure 7.13 Relation between syllable intelligibility and ‘definition’
(after Boré15).

The higher limit of delay time (80 ms compared with 50 ms in eqn (7.9))
makes allowance for the fact that with music a reflection is less detectable
than it is with speech signals. By subjective tests with synthetic sound fields
these authors have determined the values of C preferred for the presenta-
tion of various styles of orchestral music. They found that C = 0 dB indic-
ates that the subjective clarity is sufficient even for fast musical passages,
whereas a value of C = −3 dB seems to be still tolerable. Nowadays, C
(mainly referred to as C80 or C80) is widely accepted as a useful criterion
for the clarity and transparency of musical sounds in concert halls. Accord-
ing to a recent investigation on concert halls in Europe and the USA carried
out by Gade17 its typical range is from about −5 to +3 dB.

The assumption of a sharp delay limit separating useful from non-useful
reflections is certainly a crude approximation to the way in which repeti-
tions of sound signals are processed by our hearing. From a practical point
of view it has the unfavourable effect that in critical cases a small change
in the arrival time of a strong reflection may result in a significant change in
D or C. Therefore several authors have proposed a gradual transition from
useful to detrimental reflections by calculating the useful energy with a
continuous weighting function a(t):
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For a linear transition a(t) is given by
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No delay limit whatsoever is involved in the ‘centre time’ (‘Schwerpunktszeit’)
which was proposed and investigated by Kürer18 and which is defined as
the first moment of the squared impulse response:

      

t
g t t t

g t t
S   

[ ( )]

[ ( )]

=

∞

∞

�
�

0

2

0

2

d

d

(7.12)

Obviously a reflection with given strength contributes more to tS the longer
it is delayed with respect to the direct sound. High transparency or speech
intelligibility is indicated by low values of the centre time tS. The high
(negative) correlation between measured values of tS and intelligibility scores
is demonstrated in Fig. 7.14.

Quite a different approach to quantify the speech intelligibility from
objective sound field data is based on the modulation transfer function
(MTF) already introduced in Section 5.5. It quantifies the levelling effect of
reverberation on the envelope of speech signals as mentioned before. For

Figure 7.14 Relation between speech intelligibility and centre time ts

(after Kürer18).
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Figure 7.15 Modulation transfer function for exponential sound decay.
T = reverberation time, Ω = angular modulation frequency.

strictly exponential sound decay with a reverberation time T = 6.91/δ the
complex MTF reads (see eqn (5.36c))
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(with T = 6.91/δ) is plotted in Fig. 7.15. It shows that very slow variations
of a signal’s envelope are not levelled out to any noticeable extent, but very
rapid fluctuations are almost completely eliminated by the reverberant trail.
Usually, however, the sound decay does not follow a simple exponential
law, hence real modulation transfer functions deviate more or less from
that in Fig. 7.15. Furthermore, the MTF depends on the spectral com-
position of the sound signal, for instance on its frequency, if a modulated
sine signal is applied.

Houtgast and Steeneken19 have developed a procedure to convert MTF
data measured in seven octave bands and at several modulation frequencies
into one single figure of merit, which they called the ‘speech transmission
index’ (STI). This conversion involves averaging over a certain range of
modulation frequencies; furthermore, it makes allowance for the different
contributions of the various frequency bands to speech quality and also for
the mutual masking between adjacent frequency bands occurring in our
hearing organ. Finally, they have shown in numerous experiments that the



212 Room Acoustics

Figure 7.16 Relation between STI and the scores of intelligibility, obtained with:
(a) numbers and spell alphabet; (b) short sentences; (c) diagnostic rhyme test;
(d) logatoms (after Houtgast and Steeneken19).

STI is very closely related to the speech intelligibility determined with vari-
ous types of speech signals (Fig. 7.16).

We conclude this section with a few observations which apply more or
less to all the above criteria. Firstly, it is evident that they are highly correl-
ated among each other. If, for example, a particular impulse response is
associated with a short ‘centre time’ tS, its evaluation according to eqn (7.9)
will yield a high value of ‘definition’ D and vice versa. Therefore there is no
point in measuring many or all of them in order to collect as much informa-
tion as possible.

Secondly, if the sound decay in the room under consideration would
strictly obey an exponential law according to eqn (4.9) or (5.21), all the
parameters defined above could be directly expressed by the reverberation
time, as has already been done in eqn (7.14). Hence they would not yield
any information beyond the reverberation time. In real situations, however,
the exponential law is a useful but nevertheless crude approximation to a
much more complicated process. Especially in its early portions an impulse
response is far from being a smooth function of time; furthermore, the
pattern of reflections (see, for example, the uppermost part of Fig. 7.12)
usually varies from one observation point to the other, accordingly these
parameters too may vary over a wide range within one hall and are quite
sensitive to geometrical and acoustical details of a room. Therefore they are
well suited to describe differences of listening conditions at different seats
in a hall whereas the reverberation time does not significantly depend on
the place where it has been measured.
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7.5 Reverberation and reverberance

If we disregard all details of the impulse response of a room, we finally
arrive at the general decay the sound energy undergoes after an impulse
excitation or after a sound source has been stopped. As discussed in earlier
chapters of this book, the duration of this decay is characterised by the
reverberation time or decay time, at least if the energy decay obeys an
exponential law in its gross appearance.

Historically, the reverberation time was the first quantity which could be
measured objectively and could be expected to reflect the acoustical merits
of a room. It was introduced into room acoustics by W.C. Sabine20 during
the last years of the 19th century. Sabine has also developed several methods
to measure reverberation times with ever increasing accuracy, and he was
the first to formulate the laws of reverberation. Furthermore, he investig-
ated the sound absorbing power of numerous materials. So he was not just
an outstanding pioneer but rather the inventor and founder of the science
of room acoustics. The measuring techniques and the general understand-
ing of sound propagation in rooms have been improved since then, but
Sabine’s ideas continue to be the basis of modern room acoustics.

In particular, the reverberation time (or decay time) is still considered as
the most important objective quantity in room acoustics, although it has
been evident for some time that it characterises only one special aspect of
sound propagation in rooms and needs to be supplemented by additional
parameters if a full description of the prevailing listening conditions is to
be obtained. This predominance of reverberation time has at least three
reasons. Firstly, it can be measured and predicted with reasonable accuracy
and moderate expenditure. Secondly, the reverberation time of a room does
not usually depend significantly on the observer’s position in a room, a fact
which is also underlined by the simple structure of the formulae by which it
can be calculated from room data (see Sections 5.3 and 5.4). Hence it is
well suited to characterise the overall acoustic properties of a hall, neglect-
ing details which may vary from one place to another. And, finally, abun-
dant data on reverberation times of existing halls are available nowadays,
including their frequency dependence. They can be used as a yardstick, so
to speak, namely to get an idea of how the result of a particular reverbera-
tion measurement or calculation is to be judged.

Before discussing the important question which reverberation times are
desirable or optimal for the various types of rooms and halls a remark on
the just audible differences in reverberation time, i.e. on the difference thresh-
old of reverberation time, may be in order. By presenting exponentially
decaying noise impulses with variable decay times, bandwidths and centre
frequencies to a large number of test subjects, Seraphim21 was able to show
that the relative difference threshold of the decay time is about 4% of its
actual value, at least in the most important range of decay times. Although
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these results were obtained under somewhat unrealistic conditions, they
show at least that there is no point in stating reverberation times with a
greater accuracy than about 0.05 or 0.1 s.

In principle, preferred ranges of the reverberation time can be obtained
by subjective tests, for instance by intelligibility scores of speech, or by
judging music samples of various types. To lead to meaningful results such
tests should be performed, strictly speaking, in environments (real enclos-
ures or synthetic sound fields) which allow suitable variations of the rever-
beration time under otherwise unchanged conditions. This cannot be
achieved just by comparing sound recordings from different halls unless the
answers of test persons are subject to a more involved procedure of evalu-
ation (see Section 7.8).

A more empirical approach consists in collecting the reverberation times
of halls which are generally considered as acoustically satisfactory or even
excellent for the purpose they have to serve (lectures, drama theatre, oper-
atic performances, orchestra or chamber music, etc.). Sometimes the acous-
tical acceptance of a hall or of several of them is assessed by systematic
enquiries.22,23 In any case it should be noted that the collection of subjective
opinions on acoustical qualities and hence the conclusions drawn from
them are afflicted with several factors of uncertainty. This holds especially
for music. One of them is the question of who is able to utter meaningful
acoustical criticism. Certainly musicians have the best opportunity of com-
parison, since many of them perform in different concert halls. On the
other hand, musicians have a very special standpoint (meant literally as
well as metaphorically) which does not necessarily agree with that of a
listener. The same is true for acousticians and sound recording engineers,
who have a professional attitude towards acoustical matters and may fre-
quently concentrate their attention on special properties which are insignific-
ant to the average concert listeners. The latter, however, as for example the
concert subscribers, often lack the opportunity or the desire to compare
several concert halls or else they are not very critically minded in acoustical
matters, or their opinion is influenced from the point of view of local patriot-
ism. Furthermore, there are – and again this applies particularly to musical
events and their appropriate surroundings – individual differences in taste
which cannot be discussed in scientific terms. And, finally, it is quite pos-
sible that there are certain trends of ‘fashion’ towards longer or shorter
reverberation times. All these uncertainties make it understandable that it is
impossible to specify one single optimum value of reverberation time for
each room type or type of presentation, instead only ranges of favourable
values can be set up.

We start with rooms used only for speech, such as lecture rooms, con-
gress halls, parliament, theatres for dramatic performances and so on. As
mentioned earlier, no reverberation whatsoever is required for such rooms
in principle, since any noticeable sound decay has the tendency to blur the
syllables and thus to reduce speech intelligibility. On the other hand, a
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highly absorbing treatment of all walls and of the ceiling of a room would
certainly remove virtually all the reverberation, but at the same time it
would prevent the formation of useful reflections which increase the loud-
ness of the perceived sounds and which are responsible for the relative ease
with which communication is possible in enclosures as compared to out-
door communication. Furthermore, the lack of any audible reverberation
in a closed space creates an unnatural and uncomfortable feeling, as can
be observed when entering an anechoic room, for instance. Obviously one
subconsciously expects to encounter some reverberation which bears a cer-
tain relation to the size of the room. Therefore the reverberation time in
rooms of this kind should not fall short of 0.5 s approximately (except for
very small rooms such as living rooms), and values of about 1.2 s are still
tolerable especially for larger rooms.

As is well known, low frequencies contribute very little to speech intel-
ligibility. Therefore it is an advantage to apply suitably designed sound
absorbers to the walls of rooms used for speech in order to reduce the
reverberation time and hence the stationary sound level at low frequencies.

Now we shall turn to the reverberation times which can be considered to
be optimum for concert halls. In order to discover these values, we are
completely dependent on subjective opinions concerning existing halls, at
least so long as there are no results available of systematic investigations
with synthetic or simulated sound fields. As has been pointed out before,
there is always some divergence of opinion about a certain concert hall;
furthermore, they are not always constant in time. Old concert halls par-
ticularly are often commented on enthusiastically, probably more than is
justified by their real acoustical merits. (This is true especially for some
halls which were destroyed by war or other catastrophes.)

In spite of all these reservations, it is a matter of fact that certain concert
halls enjoy a high reputation for acoustical reasons. This means, among
other things, that at least their reverberation time does not give cause for
complaint. On the whole it seems that the optimum values for occupied
concert halls are in the range from about 1.6 to 2.1 s at mid-frequencies.
Table 7.3 lists the reverberation times of several old and new concert halls,
both for low frequencies (125 Hz) and for the medium frequency range
(500–1000 Hz).

At first glance it may seem curious that that which is good for speech,
namely a relatively short reverberation time, should be bad for music. This
discrepancy can be resolved by bearing in mind that, when listening to
speech, we are interested in perceiving each element of the sound signal,
since this increases the ease with which we can understand what the speaker
is saying. When listening to music, it would be rather disturbing to hear
every detail including the bowing noise of the string instruments or the air
flow noise of flutes, or minor shortcomings of the synchronism among the
instruments of an orchestra. These and similar imperfections are hidden or
masked by reverberation. What is even more important, reverberation of
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sufficient strength affects the blending of musical sounds and increases their
loudness and richness as well as the continuity of musical line. The import-
ance of all these effects for musical enjoyment becomes obvious if one
listens to music in an environment virtually free of reverberation, as for
example to a military band or a light orchestra playing outdoors: the sounds
are brittle and harsh, and it is obvious that it is of no advantage to be able
to hear every detail. Furthermore, the loudness of music heard outdoors is
reduced rapidly as the distance increases from the sound source.

But perhaps the most important reason why relatively long reverberation
times are adequate for music is simply the fact that listeners are accustomed
to hearing music in environments which happen to have reverberation times
of the order of magnitude mentioned. This applies equally well to com-
posers who unconsciously take into account the blending of sounds which
is produced in concert halls of normal size.

As regards the frequency dependence of the reverberation time, it is gen-
erally considered tolerable, if not as favourable, to have an increase of the
reverberation time towards lower frequencies, beginning at about 500 Hz
(see Table 7.3). From the physical point of view, such an increase is quite
natural since the sound absorption from the audience is generally lower at
low frequencies than it is at medium and high frequencies (see, for instance,
Tables 6.3 and 6.4). Concerning the subjective sensation, it is often believed
that increasing the reverberation time towards low frequencies is respons-
ible for what is called the ‘warmth’ of musical sounds. On the other hand,
there are quite a number of concert halls with reverberation times which do
not increase towards the low frequencies or which even have a slightly
decreasing reverberation time and which are nevertheless considered to be
excellent acoustically.

The optimum range of reverberation time as indicated above refers to the
performance of orchestral and choral music. For smaller ensembles, start-
ing with soloists and including all kinds of chamber music, a reverberation
time of 1.4 to 1.6 s is certainly more adequate.

Apart from this dependence of the reverberation time on the ensemble
size, there is another one on the style of music to be performed. It has been
investigated by Kuhl24 in a remarkable round robin experiment. In this
experiment three different pieces of music were recorded in many con-
cert halls and broadcasting studios with widely varying reverberation
times. These recordings were later replayed to a great number of listeners –
musicians as well as acousticians, music historians, recording engineers and
other engineers, i.e. individuals who were competent in that field in one
way or another. They were asked to indicate whether the reverberation
times in the different recordings, whose origin they did not know, appeared
too short or too long. The pieces of music played back were the first move-
ment of Mozart’s Jupiter Symphony (KV551), the fourth movement of
Brahms’ 4th Symphony (E minor) and the ‘Danse Sacrale’ of Stravinsky’s
‘Le Sacre du Printemps’.
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The final result was that a reverberation time of 1.5 s was considered to
be most appropriate for the Mozart symphony as well as for the Stravinsky
piece, whereas 2.1 s was felt to be most suitable for the Brahms symphony.
In the first two pieces there was almost complete agreement in the listeners’
opinions; in the Brahms symphony, however, there was considerable diver-
gence of opinion.

These results should certainly not be overvalued since the conditions
under which they have been obtained were far from ideal in that they were
based on monophonic recordings, replayed in rooms with some reverbera-
tion. But they show clearly that no hall can offer optimum conditions for
all types of music and explain the large range of ‘optimum’ reverberation
times for concert halls.

In opera houses the listener should be able to enjoy the full sound of
music as well as to understand the text, at least partially. Therefore one
would expect that these somewhat contradictory requirements can be re-
conciled by a compromise as far as the reverberation time is concerned, and
that consequently the optimum of the latter would be somewhere about
1.5 s. As a matter of fact, however, the reverberation times of well-
renowned opera theatres scatter over a wide range (see Table 7.4). Tradi-
tional theatres have reverberation times close to 1 s only, whereas more
modern ones show a definite trend towards longer values. One is tempted
to explain these differences by a changed attitude of the listeners, who
nowadays seem to give more preference to a full and smooth sound of
music than to the intelligibility of the text, whereas earlier opera goers
presumably just wanted to be entertained by the plot. The truth, however,
is probably much simpler. Old theatres were designed in such a way as to
seat as many spectators as possible, while the architects of more modern
ones (including the Festspielhaus in Bayreuth, which was specially designed
to stage Wagner’s operas) tried to follow more or less elaborate acoustical
concepts.

The question of optimum reverberation times is even more difficult to
answer if we turn to churches and other places of worship which cannot be
considered merely under the heading of acoustics. It depends on the charac-
ter of the service whether more emphasis is given to organ music and litur-
gical chants or to the sermon. In the first case longer reverberation times
are to be preferred, but in the latter case the reverberation time should
certainly not exceed 2 s. Frequently, however, churches with still shorter
reverberation times are not well accepted by the congregation for reasons
which have nothing to do with acoustics. This shows that the churchgoers’
acoustical expectations are not only influenced by rational arguments such
as that of speech intelligibility but also by hearing habits.

As mentioned above, the reverberation time is a meaningful measure for
the duration of the decay process only if the latter is exponential, i.e. if the
decay level decreases linearly with time. If, on the contrary, a logarithmic
decay curve is bent and consequently each section of it has its own decay
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Figure 7.17 Subjective reverberation time as a function of the initial reverberation
time T160 (after Atal et al.25).

rate, the question arises which of these sections is most significant for the
subjectively perceived ‘reverberance’ of a room.

To answer this question Atal et al.25 added non-exponential artificial
reverberation produced by a number of computer-simulated comb filters
(see Section 10.5) to speech and music samples. The signals modified in this
way were presented over earphones to test subjects, who were asked to
compare them with exponentially reverberated signals in order to find the
subjectively relevant decay rate of the non-exponential decays. The results
are plotted in Fig. 7.17. The abscissa represents the reverberation time
corresponding to the initial slope (first 160 ms) of the non-exponential de-
cay; the ordinate is the reverberation time of an exponential decay giving
the same impression of reverberance, i.e. the subjective or effective rever-
beration time. Similar results were obtained with sound signals reverber-
ated in concert halls.

These findings can be explained by the fact that the smoothing effect of
reverberation on the irregular level fluctuations of continuous speech or
music is mainly achieved by the initial portion of the decay process, while
its later portions add up to a general ‘background’ which is not felt subject-
ively as a typical effect of reverberation but rather as some sort of noise.
Only final or other isolated chords present the listener with the opportunity
of hearing the complete decay process; but these chords occur too rarely
for them to influence to any great degree the overall impression which a
listener gains of the hall’s reverberance.
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Nowadays it has become common to characterise the rate of sound de-
cay in its initial portion by the ‘early decay time’ (EDT) following a pro-
posal of V. Jordan.26 This is the time in which the first 10 dB fall of a decay
process occurs, multiplied by a factor 6. It may be longer or shorter than
the Sabine reverberation time. Recent listening tests based on binaural
impulse responses recorded in different concert halls confirmed that the
perceived reverberance is closely related to EDT.17

The overall reverberation time does not show substantial variations with
room shape. This is so because the decay process as a whole is made up of
numerous reflections with different delays, strengths and wall portions where
they originated. On the contrary, the ‘early decay time’ is strongly influ-
enced by early reflections, and therefore depends noticeably on the measur-
ing position; furthermore, it is sensitive to details of the room geometry. In
this respect it resembles to some extent the parameters discussed in the
preceding sections.

7.6 Sound pressure level, strength factor

For a long time the stationary sound pressure level or energy density a
sound source produces in a hall was not considered as an acoustical quality
criterion because it depends mostly on the power output of the source and
the absorption area (or the reverberation time) of the room. In recent times,
however, the general attitude towards the overall level has changed since
high definition or clarity is of little use if the sound is too weak to be heard
at a comfortable loudness. Moreover, the simple eqn (5.6) which relates the
energy density to the absorption area and the source power P is valid for
diffuse sound fields only, and the field within a real hall deviates more or
less from this ideal condition.

If the sound pressure level (SPL) in an enclosure is to merely reflect prop-
erties of the enclosure and not of the source, it must be measured by using
a non-directional sound source and its power output must be accounted for
by some suitable normalization. This can be done by subtracting the level
SPLA which the sound source would produce in an anechoic room at a
distance rA = 10 m from the SPL, i.e. the level observed in the enclosure. As
will be shown in Section 8.3, this difference is equivalent to what is known
as the ‘strength factor’ nowadays:
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gA is the impulse response measured with the same sound source in an
anechoic room at 10 m distance.
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By inserting A = 0.163 V/T into eqn (5.6) and setting wA = P/4πr2
Ac the

strength factor in a diffuse sound field would be
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On the other hand, Gade and Rindel27 found from their measurements in
21 Danish concert halls that the strength factor shows a linear decrease
from the front to the rear of any hall which corresponds to 1.2–3.3 per
distance doubling, and that its average in each hall falls short of the value
predicted by eqn (7.16) by 2–3 dB. Furthermore, the steady state level does
not depend in a simple way on the reverberation time or on geometrical
data of the hall. From these results it may be concluded that the sound
fields in real concert halls are not perfectly diffuse, and that the strength
factor is indeed a useful figure of merit.

7.7 Spaciousness of sound fields

The preceding discussions of this chapter predominantly referred to the
temporal structure of the impulse response of a room and to the auditive
sensations associated with them. A subjective effect not mentioned so far,
which is nevertheless of utmost importance, at least for concert halls, is the
acoustical ‘sensation of space’ which a listener usually experiences in a
room. It is caused by the fact that the sound in a closed room reaches the
listener from quite different directions and that our hearing although not
able to locate these directions separately processes them into an overall
impression, namely the mentioned sensation or feeling of space.

It is quite evident that this sensation is not achieved just by reverberation
itself; if music with reverberation is replayed through a single loudspeaker
in a relatively ‘dry’ environment, it never suggests acoustically the illusion
of being in a room of some size, no matter if the reverberation time is long
or short. Likewise, if the music is replayed through several loudspeakers
which are placed at equal distance but in different directions seen from the
listener, and which are fed by identical signals, the listener will not feel
more enveloped by the sound. Instead, all the sound seems to arrive from a
single imaginary sound source, a so-called ‘phantom source’ which can
easily be located and which seems, at best, somewhat more extended than
a single loudspeaker. The same effect occurs if a great number of loud-
speakers in an anechoic room are arranged in a hemisphere (see Fig. 6.21)
and are connected to the same signal source. A listener in the centre of the
hemisphere does not perceive a ‘spacious’ or ‘subjectively diffuse’ sound
field but instead he perceives a phantom sound source immediately overhead.
Even the usual two-channel stereophony employing two similar loudspeaker
signals, which differ in a certain way from each other, cannot provide a full
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acoustical impression of space since the apparent directions of sound incid-
ence remain restricted to the region between both loudspeakers.

The ‘sensation of space’ has attracted the interest of acoustic researchers
for many years, but only since the late 1960s has real progress been made
in finding the cause of this subjective property of sound fields. The different
authors used expressions like ‘spatial responsiveness’, ‘spatial impression’,
‘ambience’, ‘apparent source width’, ‘subjective diffusion’, ‘Räumlichkeit’,
‘spaciousness’ ‘listener envelopment’ and others to circumscribe this sensa-
tion. Assuming that all these verbal descriptions are to signify the same thing,
we shall prefer the term ‘spaciousness’ or ‘spatial impression’ in the following.

For a long time it was common belief among acousticians that spacious-
ness was a direct function of the uniformity of the directional distribution
(see Section 4.3) in a sound field: the more uniform this distribution, the
higher the degree of spaciousness. This belief originated from the fact that
the ceiling and walls of many famous concert halls are highly structured
by cofferings, niches, pillars, statuettes and other projections which sup-
posedly reflect the sound in a diffuse manner rather than specularly.

It was the introduction of synthetic sound fields as a research tool which
led to the insight that the uniformity of the stationary directional distribu-
tion is not the primary cause of spaciousness. According to Damaske29,
spatial impression can be created with quite a few synthetic reflections
provided they reach the listener from lateral directions, and the signals they
carry are mutually incoherent although derived from the same original sig-
nal (see Section 4.1).

Mathematically, the degree of coherence can be expressed by the correla-
tion coefficient or correlation factor Ψ: let p1(t) and p2(t) denote the sound
pressures of two acoustic signals, then

  
Ψ  

( ) /
=

N

OP 1 2
(7.17)

(The horizontal overbars indicate averaging with respect to time.) For com-
plete coherence this quantity assumes the value +1 or −1 (the second value
occurs when both signals are equal but of opposite sign). Ψ = 0 is
the condition for complete incoherence. (Strictly speaking, Ψ = 0 is only a
necessary but not a sufficient condition for incoherence. This may be seen
by applying eqn (7.17) to the two cosine signals considered at the end of
Section 4.1 for which the correlation factor is cos ω (t2 − t1), i.e. it assumes
all values between −1 and +1. If pure tones are excluded, however, the
magnitude of Ψ can be taken as a good measure the degree of coherence.)

If p2 in eqn (7.17) is the replica of p1 apart from a delay τ, the correlation
factor becomes proportional to the autocorrelation function of the sound
signal, φpp(τ). From measured data of music samples (see Fig. 1.10), we
learn that their autocorrelation functions have fallen well below their
maximum value if the delay τ exceeds a few milliseconds. Hence it can be
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concluded that in a large hall the usual delays of lateral reflections are
sufficient to destroy their coherence.

That only the lateral reflections (i.e. not reflections from the front, from
overhead or from the rear) contribute to spaciousness has been emphasised
especially by Marshall,29 although it had been observed by earlier authors.30

Virtually all the later publications have confirmed this hypothesis. A very
extensive investigation on the spaciousness caused by early lateral reflec-
tions is due to Barron.31 He found the contribution of a reflection to spa-
ciousness to be proportional to its energy and to cos θ, θ being the angle
between the axis through a listener’s ears and the angle of sound incidence,
provided the delay is in the range from 5 to 80 ms. Furthermore, this con-
tribution is independent of other reflections and of the presence or absence
of reverberation. Based on these results the ‘early lateral energy fraction’32

was proposed as an objective measure for the spatial impression:
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(The replacement of cos θ with cos2 θ in the numerator of this expression is
a concession to the experimental feasibility.) In large halls, the LEF may
vary from 0 to about 0.5.

Another way of characterising the laterality of reflected sounds is based
upon the fact that sound impinging on a listener’s head from its vertical
symmetry plane will produce equal sound pressures at both his ears whereas
sound, i.e. reflections, from outside the symmetry plane will produce differ-
ent ear signals. Generally, the similarity or dissimilarity of two signals is
measured by their cross correlation function as defined in eqn (1.40).
Applied to the impulse responses gr and gl measured at the right and the left
ear, and suitably normalised this function reads:
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The upper limit t0 (= 100 ms, for instance) is to restrict the integration on
the range of ‘early reflections’, hence ϕrl is some ‘short time’ correlation
function. The maximum of its absolute value within the range | τ | < 1 ms is
called the ‘interaural cross correlation’ (IACC)33,34. Of course, this quantity
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is negatively correlated with the spatial impression. High values of the
IACC mark a low degree of spaciousness. It should be mentioned that
several versions of the IACC are in use which differ in the upper limit t0 in
eqn (7.19), or in the type of filtering exerted on impulse responses prior to
inserting them into eqn (7.19). Beranek47 prefers the use of an IACC which
comprises three octave bands with mid-frequencies 0.5, 1 and 2 kHz, and
reports that the values of this quantity are as low as 0.3 in excellent concert
halls.

But laterality of the early reflections is not the only factor on which the
impression of spaciousness depends. As early as 1967 Reichardt and Schmidt4

found that the spatial impression, for which they established a subjective
scale, increases monotonically with the reverberant energy Er relative to
that of the energy E0 of the direct sound:

H = 10 log10(Er/E0) dB (7.20)

Furthermore, Keet35 observed that the spatial impression depends strongly
on the listening level. There seems to be some agreement nowadays that
spatial impression is not a ‘one-dimensional’ sensation, but consists of at
least two components which are more or less independent. The most prom-
inent of these components are the ‘apparent source width’ (ASW) and
‘listener envelopment’.36 If this view is adopted it seems reasonable to
attribute Damaske’s and Barron’s results to the apparent source width ASW
and to consider the objective quantities LEF and IACC as predictors of this
particular sensation.

This leaves us with the question which objective parameters of the sound
field are responsible for the remaining component, namely the sense of
‘listener envelopment’.

This question was the subject of careful experiments performed by Bradley
and Soulodre36 who created a synthetic sound field with five loudspeakers,
namely a frontal one and four more loudspeakers at lateral angles of ±35°
and ±90°. These loudspeakers simulated the direct sound and isolated early
reflections delayed by 15, 40, 50 and 70 ms as well as reverberation with
onset times exceeding 80 ms. This system enabled the experimenters to
vary independently the reverberation time, the relative energy of the late
reflections expressed by the clarity index C80 (see eqn (7.10), the A-weighted
sound pressure level, and the angular distribution of the reverberated
signals, whereas the IACC and the LEF were kept constant through all
combinations.

It turned out that the angular distribution had the largest effect. The
wider it was, the higher is the listener envelopment. Another strong influ-
ence was that of the overall sound level, while the relative strength of the
early energy (C80) and the reverberation time was found to be less signi-
ficant. A correlation analysis revealed that the best objective predictor for
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the perceived listener envelopment is the strength factor (see eqn (7.15))
restricted to the late lateral reflections:
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and to a frequency range covering the octave bands with mid-frequencies
125, 250, 500 and 1000 Hz, thus accounting for the fact that high fre-
quency components do not contribute much to the sense of listener envelop-
ment. The range from missing to maximum envelopment corresponds to a
range in LG∞

80 from −20 to 2 dB.
Thus the present state of the art can be summarised in the statement that

‘spatial impression’ is caused by reflections impinging on the listener from
lateral directions. If their delays with respect to the direct sound are below
about 80 ms they increase the ‘apparent source width’ while those with
longer delays contribute to the sensation of ‘listener envelopment’. This
insight has immediate implications for the acoustical design of concert halls.

7.8 Assessment of concert hall acoustics

Although nowadays quite a number of parameters are at the acousticians’
disposal to quantify the listening conditions in a concert hall (or particular
aspects of them), the situation is still unsatisfactory in that important ques-
tions remain unanswered. Do these parameters yield a complete description
of the acoustics of a hall? Are they independent from each other? Which
relative weight is to be given to each of them? Is it possible, for instance, to
compensate insufficient reverberation by a large amount of early lateral
energy?

Conventional attempts to correlate the acoustical quality of a concert
hall with an objective measure or a set of them have not been very satis-
factory because they concentrated on one particular aspect only or, as for
instance Beranek’s elaborate rating system,23 relied on plausible but un-
proven assumptions. Since about 1970, however, researchers have tried to
get a complete picture of the factors which contribute to good acoustics,
including their relative significance, by employing modern psychometric
methods.

The basic idea of this approach is first to detect the number and signific-
ance of independent scales of auditive perception and then, as a second
step, to find out the physical parameters which show the highest correlation
to these scales.

To collect the material for this analysis, music samples are recorded in
different concert halls or at different places in one hall, using a dummy
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Figure 7.18 Two-dimesional perceptual space with factors F1 and F2. The vector
represents the preference scale of one subject. The points A, B, C, etc. denote
different concert halls or seats.

head. These samples are presented to test subjects, either by headphones or
by loudspeakers in an anechoic room. In the latter case it is advantageous
to employ the cross-talk cancellation (CTC) techniques described at the end
of the introduction to this chapter. The subjects are asked either to assess in
some way the differences between subsequent listening impressions37,38 or
to give scores to the presented signals using a number of bipolar rating
scales with verbally labelled extremes such as ‘dull–brilliant’, ‘cold–warm’,
etc.,39,40 or simply to say which of two presentations they prefer.41,42 Such
data are collected from many listeners and then are subjected to a math-
ematical procedure called factor analysis. It results in r of independent
perceptual scales, called ‘factors’, and the relative significance of each of
these factors.

The meaning of these factors or scales is principally unknown, but some-
times they can be circumscribed vaguely by verbal labels such as ‘reson-
ance’ or ‘proximity’.

These factors can be thought of as coordinate axes of an r-dimensional
‘perceptual space’ in which each listening situation (concert hall, or seat in
a hall) is represented by a point. Suppose r = 2; accordingly, the perceptual
space is a plane with rectangular coordinates F1 and F2 as shown in
Fig. 7.18. If the preceding factor analysis was based on preference tests,
the individual preference scale of each subject can be represented by a
vector in this plane. Fig. 7.18 shows just one of them. According to the
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angle α which it includes with the axis F1, this particular listener gives in
his preference judgement a weight of cos α to the factor F1 and of sin α to
the factor F2. The projections of the ‘concert hall points’ A, B, C, etc. on
this vector indicate this listener’s personal preference rating of these halls.
Similarly, if bipolar rating scales have been used, these scales can be pre-
sented as directions in such a diagram.

Wilkens and Plenge40,43 collected their test samples by following an or-
chestra on its tour playing the same programme (Mozart, Bartok, Brahms)
in six different halls. They used headphones for the reproduction and found
three factors to be relevant, which they labelled as follows:

F1: strength factor (47%)
F2: distinctness factor (28%)
F3: timbre factor (14%)

The numbers in the brackets denote the relative significance of the three
factors. They add up to 89% only, which means that there are further,
however insignificant, factors. It is interesting to note that there seem to be
two groups of listeners: one group which prefers loud sounds (high values
of F1) and one giving more preference to distinct sounds (high values of F2).
(A similar division of the subjects into two groups with different prefer-
ences has been found by Barron.22)

In the course of this research project, physical sound field parameters
have been measured at the same positions in which the sound recordings
have been made. Lehmann44 has analysed them in order to select those
which show highest correlation with the factors F1 to F3. He found that F1

is highly correlated with the strength factor G from eqn (7.15), whereas F2

shows high (negative) correlation with Kürer’s ‘centre time’ tS (see Section
7.4). Finally, the factor F3 seems to be related to the frequency dependence
of the ‘early decay time’.

In contrast to the aforementioned authors, Siebrasse42 collected his test
samples by replaying ‘dry’, i.e. reverberation-free music, namely a motif of
Mozart’s Jupiter Symphony, stereophonically from the stages of 25 Euro-
pean concert halls and by re-recording them with an artificial head. The
samples prepared in this way were presented to the test subjects in the free
field at constant level employing a CTC system mentioned in the introduc-
tion to this chapter. The subjects were asked to judge preference between
pairs of presentations. Application of factor analysis indicated four factors
F1 to F4 with relative significances of 45%, 16%, 12% and 7%. In Fig. 7.19,
which is analogous to Fig. 7.18, part of his results are plotted in the plane
of factors F1 and F2. The vectors representing the individual preference
scales have different lengths since they have non-vanishing components
also in F3- and F4-directions. The fact that they all are directed towards the
right side leads to the conclusion that F1 is a ‘consensus factor’, whereas the
components in F2-direction reflect differences in the listeners’ personal taste.
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Figure 7.19 Individual preference scales of 12 test subjects (arrows) and
22 concert hall points (A, B, . . . , Y) represented in the F1–F2 plane of a
four-dimensional perceptual space.

This holds as well with regard to the factors F3 and F4. In order to find out
the objective sound field parameter with the highest correlation to the con-
sensus factor F1, Gottlob34 analysed the impulse responses observed at the
same places where the music samples had been recorded. The reverberation
time proved to be important only when it deviated substantially from an
optimum range centred on 2 s. If halls with unfavourable reverberation
times are excluded, F1 shows high correlation with several parameters, of
which the interaural cross-correlation (IACC) (see Section 7.7) seems to be
of particular interest, since it is virtually independent of the reverberation
time. Another highly correlated quantity is the width of a concert hall. Both
the IACC and the width of a hall are negatively correlated to F1, i.e. narrow
concert halls are generally preferred. This again proves the importance of
early lateral reflections which are particularly strong in narrow halls and,
on the other hand, lead to a low value of the IACC. In a more recent
publication45 an even higher correlation to F1 has been reported for the sum
of the early lateral energy and the reverberant energy, where the latter is
obtained by integrating the squared impulse response from 80 ms to infin-
ity. This may be considered as an early indication that the spatial impres-
sion in a room is made up of two components, namely ‘apparent source
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width’ and ‘listener envelopment’, and that both contribute to the quality
of a concert hall.

The fact that both investigations reported above show such poor agree-
ment may have several explanations: the differences in the way the test
samples were collected and presented to the subjects, different choice of halls,
and different judging schemes. It is not surprising, however, that in the
second study the strength or loudness of the sound signal does not show up
since here all test samples were presented to the subjects at equal loudness.

A somewhat different approach to arrive at a consistent rating system for
concert halls is due to Ando46, who simulated sound fields consisting of a
direct sound, two distinct reflections and subsequent, electronically gener-
ated reverberation (see Section 10.5). The latter was radiated by four loud-
speakers which were distributed along a circle and fed with mutually delayed
signals. The electrical signals were computer controlled in such a way that
four independent parameters could be varied, namely the overall listening
level, the ‘initial time delay gap’ ∆t1 (i.e. the delay of the first reflection), the
subsequent reverberation time T, and the interaural cross-correlation IACC.
Ando summarised the results of his extended preference tests in a figure-of-
merit which he called the ‘total subjective preference’:
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The quantities X1, X2 and X3 are the deviations of the A-weighted sound
pressure level, of ∆t1 and of T from certain standard values, the so-called
‘most preferred values’ denoted with the index p. The weight factors αi

depend on the sign of the deviation. Here pp corresponds to a level of
79 dB(A), whereas (∆t1)p = (1 − log10A)τe and Tp = 23τe. A is the square root
of the energy contained in all reflections relative to the energy of the direct
sound, and τe is the effective duration of the autocorrelation function of the



Characterisation of subjective effects 231

sound signal (see Section 1.7). The most preferred value of the IACC is
zero. Ando’s ‘total subjective preference’ Sa vanishes if all the parameters
assume their most preferred values, negative values of Sa indicate certain
acoustical deficiencies.

Beranek47 has modified this rating scheme by adding two further com-
ponents to it, namely ‘warmth’ (equal to low frequency divided by mid-
frequency reverberation time) and an index for the surface diffusivity of a
concert hall to be determined by visual inspection. He applied it to his
famous collection of data on concert halls and opera theatres. On the other
hand he assigned each of these concert halls into one of six categories of
acoustical quality, ranging from ‘fair’ (category C) to ‘superior’ (category
A+) by evaluating numerous interviews with musicians and music critics.
Comparing the category of a particular hall with the rating number it earned
demonstrated satisfactory agreement with its subjectively assessed quality.

In a way, Ando’s approach seems to answer the questions raised at the
beginning of this section. However, it does not fully agree with the reported
results of factor analysis from which the initial time delay gap did not
emerge as a significant acoustical criterion. Furthermore, it states that there
is an optimum acoustical environment regardless of obvious differences in
listeners’ taste. If all designers of concert halls consequently decided to
follow the guidelines of this system, the result would be halls not only
equally good but of equal acoustics. We doubt whether this is a desirable
goal of room acoustical effort, since variations in acoustical impressions are
just as enjoyable as different architectural solutions or different musical
interpretations.

We have to admit that the insights which have been reported in this
chapter do not combine to form a well-rounded picture of concert hall
acoustics; they are not free of inconsistencies and even contradictions, and
hence are to be considered as preliminary only. Nevertheless, it is obvious
that major progress has been made during the past few decades; there is at
least some agreement on likely important issues for concert hall design.
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8 Measuring techniques in
room acoustics

The starting point of modern room acoustics is marked by attempts to find
and to define objective parameters which have a mediatory function, in that
they are related in a known way with geometrical and other room data on
the one hand and with certain listening impressions on the other. As we
have seen in the preceding chapter, quite a number of such parameters have
been introduced in room acoustics since then with varied justification and
significance, and it is the object of the present chapter to describe how such
quantities can be measured and which kind of equipment is required for
this purpose.

Measurements in room acoustics are not only necessary to increase our
knowledge of the factors which govern the subjectively perceivable acous-
tical qualities of a room but they are also a valuable diagnostic tool and
can give useful supporting information in the design of large halls. If, for
instance, an existing hall is to be refurbished or to be used for other purposes
than was originally intended, or if there are certain acoustical deficiencies
to be eliminated by constructive modifications, measurements of at least the
reverberation time are indispensable. When a new hall is being designed, it
may be very advantageous to perform measurements on a model of this hall
in order to predict its acoustical behaviour and to detect possible acoustical
faults and their causes as early as possible. Furthermore, it is advisable to
carry out measurements during the various phases of the construction of a
hall in order to check the acoustical concepts upon which the designs are
based and, if necessary, to propose modifications in the inner finish, for
instance in the choice of wall materials, seat upholstery and so on, at a time
when this can be realised without much additional costs.

Other acoustical measurements which are not directly related to sub-
jective impressions concern the investigation of the acoustic properties of
materials, especially of the absorption of materials for walls and ceiling, of
seats, etc. Knowledge of such data is absolutely essential for any planning
in room acoustics. Many of them can be found in published collections,
but often the acoustical consultant is faced with new products or with
specially designed wall linings, for instance, for which no absorption data
are available. This holds even more with regard to the scattering efficiency
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of acoustically ‘rough’ surfaces, for which almost no data have been pub-
lished so far.

During the past decade, the conventional measuring equipment which
consisted of electronic ‘hardware’ has been widely replaced with digital
components (digital computers in connection with analogue-to-digital con-
verters, transient recorders, printers and plotters, etc.). Nevertheless, some
of the traditional measuring procedures still keep their place nowadays.
Since the sound waves are basically ‘analogue’, i.e. not digital, at least the
transducers (sound sources, microphones) continue to be of the analogue
type. In the following we are going to describe both kinds of measuring
procedures and equipment.

8.1 General remarks on instrumentation

Viewed from our present state of the art, the equipment which W.C. Sabine1

had at his disposal for his famous investigation of reverberation appears
quite modest: he excited the room under test with a few organ pipes and
used his ear as a measuring instrument in conjunction with a simple stop
watch. With the development and introduction of the electrical amplifier in
the 1920s, almost all measuring techniques became electrical. In acoustics,
the ear was replaced with a microphone and the fall in sound level was
observed with electromechanical level recorders. Furthermore, electrical
filters became available, and the mechanical sound source was often re-
placed with a loudspeaker. More recently, the introduction of the digital
computer has triggered off a second revolution in measuring techniques: all
kinds of signal processing (filtering, storing and evaluation of measured
signals as well as the presentation of results) can now be made with digital
means which are generally more powerful, precise and flexible – and less
expensive – than with the more traditional equipment.

For field measurement of the reverberation time, the most convenient
way to excite the room is still by using a pistol since it is easy to operate
and sufficiently powerful even if there is some background noise. (In his
own interest, the user should wear ear protectors.) The same holds for
wooden hand clappers or bursting air balloons which yield high excitation
especially at low frequencies. However, the use of electrical loudspeakers in
combination with a signal generator and a power amplifier opens the pos-
sibility to produce any kind of excitation signal (frequency modulated tones,
filtered random noise, specially shaped impulses, etc.) by which the signal-
to-noise ratio may be greatly improved. For reverberation measurements,
no particular requirements concerning the uniformity of the radiation must
be met by the loudspeaker since the various sound components will anyway
be mixed during the decay process.

This is different if the impulse response of the room or the directional
distribution of sound energy is to be observed. Then any directionality of the
sound source should be avoided, otherwise the result of the measurement
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Figure 8.1 Dodecahedron loudspeaker for acoustical measurements.
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would depend not only on the position of the source but also on its ori-
entation. One way to obtain uniform sound radiation is to employ 12 or
20 equal and equally fed loudspeaker systems mounted on the faces of a
regular polyhedron (dodecaeder or icosaeder). A dodecaeder loudpeaker is
shown in Fig. 8.1.

It should be noted that even this kind of source is omnidirectional only at
low frequencies. A different approach is to employ the driver of a powerful
horn loudspeaker and to replace the horn by a tube, the open end of which
radiates the sound uniformly provided its diameter is small compared with
the wavelength. The resonances of the tube can be suppressed by inserting
some damping material into it. Almost omnidirectional radiation of power-
ful acoustical wide-band impulses can also be achieved by specially de-
signed electrical spark gaps.2

To pick up the sound in the enclosure, pressure-sensitive microphones
with omnidirectional characteristics are usually employed. For certain meas-
urements, however, gradient receivers, i.e. figure-of-eight microphones, must
be used. Receivers with still higher directivity are needed to determine the
directional distribution of sound energy at a certain position. They consist
of arrays of microphones, or of a standard microphone fitted out with a
special device such as a concave mirror or a slotted tube. Although the
experimenter should have a certain idea of the sensitivity of his micro-
phone, absolute calibration is not required since virtually all measurements
in room acoustics are relative sound measurements. The only exception
is field measurements of the ‘strength factor’ (see Section 7.6), or when
several microphones are to be used.

Usually, the output signal of the microphone needs some pre-amplification.
Then the signal can be stored for further evaluation in the laboratory with
a magnetic tape recorder or with a digital recorder. A more convenient alter-
native is to feed the received signal immediately into a portable digital
computer where it is stored in the computer’s memory or is directly pro-
cessed to yield the parameters which one is interested in. This requires, of
course, that the computer is fitted out with an analogue-to-digital converter
with sufficient dynamic range.

8.2 Measurement of the impulse response

According to system theory all properties of a linear transmission system
are contained in its impulse response or, alternatively, in its transfer func-
tion, which is the Fourier transform of the impulse response. Since a room
can be considered as an acoustical transmission system, the impulse re-
sponse yields a complete description of the changes a sound signal under-
goes when it travels from one point in a room to another, and almost all of
the parameters we discussed in the preceding chapter can be derived from
it, at least in principle. Parameters related to spatial or directional effects
can be based upon the ‘binaural impulse response’ determined for both ears
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of a listener (or of an artificial head). From these remarks it is clear that the
experimental determination of impulse responses is one of the most funda-
mental tasks in room acoustics. It requires high quality standards for all
measuring components, which must be free not only of linear amplitude
distortions but also of phase shifts.

By its very definition the impulse response of a system is the signal
obtained at the system’s output after its excitation by a vanishingly short
impulse (yet with non-vanishing energy), i.e. by a Dirac or delta impulse
(see Section 1.4). Since we are interested only in frequencies below, say,
10 kHz, this signal can be approximated by a short impulse of arbitrary
shape, the duration of which is smaller than about 50 ms. However, it
should be kept in mind that all loudspeakers show linear distortions. If a
Dirac impulse δ(t) is applied to a loudspeaker’s input, the impulse response
is not another Dirac impulse but a different signal gLS(t), and accordingly
the response g ′(t) of the room is its own impulse response g(t) convolved
with gLS(t), or after eqn (1.44) or (1.44a):

g ′(t) =
  
�

−∞

∞

g (t′)gLS(t − t ′) dt ′  (8.1)

To remove the influence of the loudspeaker both sides of eqn (8.1) can be
subjected to a Fourier transform which results in

G′(f ) = G(f )GLS(f )  (8.2)

from which the correct room impulse response g(t) can be recovered by
inverse Fourier transformation of G(f ) = G′(f )/GLS (see eqn (1.33a)). This
requires, of course, the use of a digital computer which is capable of per-
forming Fourier transforms on a sufficiently large number of samples. If fm

denotes the maximum frequency component in G(f ) the measured function
should be sampled with a rate of at least 2fm samples per second to comply
with Nyquist’s sampling theorem. Since the duration of an impulse re-
sponse is roughly the reverberation time T of the enclosure,

N = 2fmT (8.3)

Equidistant samples (typically 212 to 216) are needed to represent g(t) or
g ′(t).

In field measurements there is always some background noise, and it may
turn out that it is difficult to overcome this noise by producing sufficiently
powerful excitation impulses. This difficulty can be circumvented by spread-
ing the energy of the excitation signal over a wider time interval. Suppose
the system under test, i.e. the room, is excited by an arbitrary signal s(t).
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Principally, the influence of that signal can be eliminated from the resulting
output signal (see eqn (1.44))

s′(t) =
  
�

−∞

∞

s(t′)g (t − t ′) dt ′ =
  
�

−∞

∞

g(t′)s(t − t ′) dt ′ (8.4)

by applying the same recipe as before, namely by ‘deconvolution’ which is
equivalent to a division in the frequency domain. The Fourier transform of
eqn (8.4) reads

S′(f ) = S(f )G(f ) (8.5)

Then G(f ) is obtained as S′/S provided the magnitude of S is non-zero within
the whole frequency range of interest. Particularly well-suited for this tech-
niques, known as ‘two-channel FFT’, are broadband excitation signals with
flat power spectra as for instance white noise, sine signals with linearly
increasing frequency, or ‘maximum length sequences’ as discussed below.

An alternative to this method is to form the cross-correlation function of
the input signal s and the output signal s′. This is achieved by inserting the
second version of eqn (8.4) into eqn (1.40):
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according to eqn (1.38). Comparing the latter expression with eqn (1.36)
shows that this measuring procedure (see Fig. 8.2) yields the impulse re-
sponse g if the autocorrelation function of the exciting sound signal is the
delta function or at least approximates it.

One ‘signal’ with an autocorrelation function concentrated at τ = 0, which
therefore could be used for this measurement, is random noise. To obtain a
reasonable signal-to-noise ratio, however, the averaging time T0 for each
choice of the delay τ must not be too short (typically of the order 0.1 s). On
the other hand, quite a number of delays are needed to resolve all details of
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Figure 8.2 Measurement of the impulse response by cross-correlation
(LP = lowpass filter).

an impulse response of some length. Therefore the measurement of impulse
responses using white noise is a relatively time-consuming procedure.

More useful than random noise are ‘pseudo-random’ test signals, which
have similar properties to random noise in a way although they are deter-
ministic. Among these signals, binary impulse sequences are especially well
suited for digital generation and processing. These are sequences of delta
impulses or rectangular impulses with equal amplitudes, but with polarities
changing according to a particular pattern.

An example of transient signals of this type are Barker coded impulse
sequences. Since the length of these sequences does not exceed 13 elements,
the achieved improvement of the signal-to-noise ratio is limited.3 Another
extremely powerful measuring scheme is based on ‘maximum length se-
quences’, which are stationary and have a period comprising

l = 2n − 1

elements sk, where n is a positive integer. They can be generated by a digital
n-step shift register with the outputs of certain stages fed back to the input.4

Their main advantage, however, is that the required correlation process can
be performed in a very efficient way by employing fast Hadamard trans-
form. This method, which was introduced into room acoustics by Schroeder
and Alrutz,5 will be described in more detail in the following.

Let sk (with k = 0, 1, . . . , l ) be a maximum length sequence with the
length l, for instance for n = 3:

−1, +1, +1, −1, +1, −1, −1

Because of its periodicity we have sk+ l = sk, and it has the general property

    
sk

k

l

  = −
=

−

∑ 1
0

1

(8.7)

Since sk is a discrete function, its autocorrelation function is defined by
analogy with eqn (1.38) by
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Figure 8.3 Maximum length sequence with n = 3 and its autocorrelation function.
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and has the values l for m = 0, l, 2l, . . . and −1 for all other values of m
(Fig. 8.3).

Now we excite the room under consideration with a close succession of
equally high impulses which have the duration ∆t and the signs of which
correspond to the sequence sk. The received signal s′(t) is sampled at the
rate 1/∆t. Its samples are given by

    
′ = −

=

−

∑s s gk j k j
j

l

  
0

1

(8.9)

As mentioned before, the sampling interval ∆t should be shorter that half
the period of the highest frequency fm encountered in g(t), i.e. ∆t < 1/2fm.

Equation (8.9) is the discrete version of eqn (8.4). It can equally well be
formulated by means of a matrix S which consists of a cyclic arrangement
of the elements sk and one additional row and column of ones:
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or in short-hand notation:

s′ = S · g (8.9b)

In eqn (8.9a) we introduced Y as the negative sum of all values of s′k:

    
Y     = − ′ =

=

−

=

−

∑∑ s gk k
k

l

k

l

0

1

0

1

It is easy to prove that the symmetrical matrix S has the property
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l 1

1 0 0

0 1 0

0 0 1

Hence, if both sides of eqn (8.9b) are multiplied from the left side with S
one obtains

S · s′ = S · S · g = (l + 1)g

or

      
g S s  

  
  =

+
⋅

1

1l
′  (8.10)

which is the formal solution of our problem, namely to recover the impulse
response g(t) (or the gk) from the measured function s′(t) or the samples s ′k
taken from it, provided the duration of g(t) is shorter than the period l of
the maximum length sequence.

At first glance the introduction of the matrix S may appear as an un-
necessary complication of eqn (8.9). The great advantage of this formalism,
however, is that by interchanging rows and columns according to a certain
scheme this matrix can be transformed into a Hadamard matrix Hn which
contains (l + 1)(l + 1) = 22n elements +1 or −1 in a highly regular pattern and
which can be obtained by a simple recursion:

      
H

H H

H H
n

n n

n n
+ =

−













1  with H0 = (1) (8.11)

For our previous example with n = 3 the matrix S reads
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After interchanging its rows as well as its columns according to the follow-
ing scheme:

old number: 1 2 3 4 5 6 7 8
new number: 1 8 7 4 2 6 3 5

the re-ordered matrix is

  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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which is the Hadamard matrix H3.
To obtain the same result as with the matrix S, the Hadamard matrix

must not be applied to the sequence or one-column matrix s′ but to a
modified version s″ of it, which is obtained by interchanging its elements
according to the above scheme, and after execution of the matrix multi-
plication Hn · s″ the elements of the resulting one-column matrix have to be
rearranged into the original order to yield g.

The important point is that, on account of the regular structure of Hn,
the multiplication Hn · s′ can be carried out with a very time-efficient algo-
rithm, a so-called ‘butterfly’ algorithm.

The necessary length l of the maximum length sequence sk depends, of
course, on the desired length of the impulse response. If the latter has
significant components in the time interval from 0 to tm, the inequality
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l ≥ 2fmtm (8.12)

has to be fulfilled. It is of crucial importance, of course, that the sampling
rate of the received signal s′(t) agrees exactly with the rate at which the
excitatory impulses s(t) are generated and emitted.

It is beyond the scope of this representation to describe the algorithm of
fast Hadamard transform, i.e. for the multiplication Hn · s′; the same holds
for the general rule according to which the elements of s′ have to be
permutated. For these details the reader is referred to the literature.5,6

8.3 Correlation measurement

Besides the impulse responses, various types of correlation functions have
several useful applications in room acoustics. One of them was mentioned
in the preceding section, where the cross-correlation of two signals was
used to determine the impulse response of a linear system, in particular of a
room. Another example is the interaural cross-correlation function (IACC)
defined in Section 7.7. Further applications will be described in subsequent
sections. In this section a few procedures to measure correlation functions
will be described.

Generally correlation functions can be used to detect or to characterise the
causal relationship between two different time functions (cross-correlation
function), or the degree of randomness of one function (autocorrelation
function). They are especially useful in such cases where the functions to be
compared are stochastic functions or have at least such a complicated struc-
ture that a mutual relationship cannot be recognised by simple inspection.
It is just this aspect which frequently applies to room acoustics, as for
instance in the impulse response of the transmission path between two
points of a room.

Let s1(t) and s2(t) be two stationary time functions. Their cross-
correlation function φ12(τ) is formed according to eqn (1.40). Its evaluation
or experimental determination is meaningful only in such cases where no
analytical representation of both functions is possible or available. A spe-
cial case of it with s1 = s2 is the autocorrelation function φ11, already defined
in eqn (1.38). It compares different sections of the same function and thus
is a measure of how far functional relationship extends. Obviously φ11 is an
even function in τ.

The function to be investigated most frequently in room acoustics is the
impulse response g(t) for the transmission between two points. In contrast
to s1 and s2 it is, however, not a stationary function of time; instead it be-
gins at a certain time and vanishes for t → ∞. If the room under investigation
(see Fig. 8.4) is excited by white noise r(t), the response to this sound signal
at two different points in the room is given according to eqn (1.44) by
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Figure 8.4 Measurement of cross-correlation functions in a room employing
steady state excitation.

s1,2(t) =
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g1,2(x) r(t − x) dx (8.13)

These functions are stationary and can be inserted into eqn (1.40), which,
after interchanging the order of integration, yields
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The expression in the brackets is the autocorrelation function of the ran-
dom noise signal r(t), taken at the argument τ + x − y, which has virtually
the character of a delta function because of the flat frequency spectrum of
r(t). Thus we obtain

Φ12(τ) =
  
�

−∞

∞

g1(x)g2(x + τ) dx (8.15)

This means the cross-correlation function may be directly obtained from
both impulse responses by replacing the noise generator NG in Fig. 8.4
with an impulse generator. The same holds for the measurement of the
autocorrelation function of one impulse response, say of g1; in this case
the input of the delaying device is connected to microphone 1 too, with the
result

Φ11(τ) =
  
�

−∞

∞

g1(x)g1(x + τ) dx (8.16)
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Another useful method for performing correlation measurement is the play-
back method depicted schematically in Fig. 8.5. Again the room is excited
by a short impulse at switch position I; the output of microphone 1 yields
the impulse response g1(t), which is stored in some way. Then the signal is
replayed in reverse time order, and the reversed impulse response g1(−t)
thus obtained is applied once more to the room as an exciting signal (switch
position II). As a result the output voltage of the microphone will be pro-
portional to the function

  
�

−∞

+∞

g1(−x)g2(t − x) dx =
  
�

−∞

+∞

g1(x)g2(x + t) dx

which agrees with eqn (8.15) and is thus the cross-correlation function
Φ12(t) which is obtained as a function of real time and can hence be ob-
served directly on the screen of an oscilloscope. During the same phase of
the measurement, the microphone 1 yields the autocorrelation function of
the impulse response g1 according to eqn (8.16). No delaying unit and no
multiplicator is needed in this method. Sometimes it may be desirable or
necessary to restrict the frequency range of a correlation measurement. This
can be achieved by inserting a suitable filter into the electrical signal path or
– if the measurement is carried out with impulse excitation – to employ test
signals with the desired frequency spectrum. Then the autocorrelation func-
tion modified by the filter is

Φ11
mod(τ) = Φ11(τ) * ΦFF(τ) (8.17)

with ΦFF denoting the autocorrelation function of the filtered test signal.
As an example of both the play-back method and the effect of filtering

Fig. 8.6 shows an autocorrelogram obtained with the play-back method in
a reverberation chamber which was excited by an impulse with Gaussian
envelope having a centre frequency of 2000 Hz and a duration of about

Figure 8.5 Measurement of cross-correlation functions in a room by play-back.
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Figure 8.6 Autocorrelogram taken in a reverberation chamber by the play-back
method. The room was excited by a filtered impulse with about 1 ms duration
and a centre frequency of 2000 Hz: (a) abscissa unit corresponding to 20 ms;
(b) same as (a) but abscissa unit 5 ms.

1 ms. The central peak of this function is nearly a replica of the exciting
impulse.

Since any time function is related to a frequency function by the Fourier
transformation, all relations and operations mentioned above can be
expressed in the frequency domain as well. Table 8.1 lists some of these
correspondences. So the autocorrelation functions (second line) correspond
to power spectra, according to eqns (1.37) and (1.39), and convolutions in
the time domain (fourth line) correspond to multiplications in the frequency
domain, according to eqns (1.44) and (1.45). Therefore a useful alternative
to the direct correlation of time functions as described before may be to
transform these functions into frequency functions, to perform the required
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Table 8.1 Corresponding time and frequency functions

Time domain Frequency domain

g(t) G( f )

Φ11(τ) G1( f ) · G*1( f ) = | G1( f ) |2

Φ12(τ) G1( f ) · G*2(f )

Φ11
mod(τ) = Φ11(τ)*ΦFF(τ) | H1( f ) |2mod = | H1( f ) |2 · | S( f ) |2

multiplications with them and to transform the result back into the time
domain. Which method is preferable depends on the time needed to per-
form it.

8.4 Examination of the time structure of the impulse response

After this digression into correlation analysis we return now to the impulse
response of a room or, more precisely, to the impulse response of a particu-
lar transmission path within a room. Some of the information it contains
on the acoustics of the room can be found directly by inspection of a
‘reflectogram’, by which term we mean the graphical representation of the
impulse response or another time function which is closely related to it.
Futhermore, certain parameters which have been discussed in the preceding
chapter may be extracted from the impulse response. (The measurement of
reverberation time will be postponed to a separate section below.) In any
case, however, some further processing of the measured impulse response is
useful or necessary.

From the visual inspection of a reflectogram the experienced acoustician
may learn quite a bit about the acoustical merits and faults of the place for
which it has been measured. One important question is, for instance, to what
extent the direct sound will be supported by shortly delayed reflections, and
how these are distributed in time. Furthermore, strong and isolated peaks
with long delays which hint at the danger of echoes are easily detected.

The direct examination of a reflectogram is greatly facilitated – especially
that of a band-limited reflectogram – if insignificant details of it are re-
moved beforehand. In principle, this can be effected by rectifying and
smoothing the impulse response. This process, however, introduces some
arbitrariness into the obtained reflectogram with regard to the applied time
constant: if it is too short, the smoothing effect may be insufficient; if it is
too long, important details of the reflectogram will be suppressed. One way
to avoid this uncertainty is to apply a mathematically well-defined proced-
ure to the impulse response, namely to form its ‘envelope’. Let s(t) denote
any signal, then its envelope is defined as

e(t) = √{[s(t)]2 + [f(t)]2} (8.18)
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Figure 8.7 Impulse response (upper part) and its squared envelope, obtained by
means of an analogue Hilbert transformer. Total range of abscissa in 400 ms.

Here f(t) denotes the Hilbert transform of s(t):
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which has quite a number of interesting properties and applications (see
Ref. 4 of Chapter 5, for instance). Probably the most convenient way
to calculate the Hilbert transform is by exploiting its spectral properties.
Let S( f ) denote the Fourier transform of s(t), then the Fourier transform of
f(t) is

X(f ) = −iS(f ) sign( f ) (8.20)

Hence, a function s(t) may be Hilbert transformed by computing its spec-
tral function S, modifying it according to eqn (8.20) and transforming it
back into the time domain. There are also other efficient methods to com-
pute the Hilbert transform in the time domain.

Figure 8.7 illustrates how an experimental reflectogram is modified by
forming its squared envelope [e(t)]2. It is obvious that the latter exhibits the
significant components much more clearly.
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Figure 8.8 Reflectograms of a lecture room at different places (centre frequency
3000 Hz, impulse duration about 1 ms). Upper traces: original impulse response.
Lower traces: after rectifying and smoothing with time constant τ = 25 ms.
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The visual examination of reflectograms may further be facilitated by
smoothing their envelope in order to simulate the integrating properties of
our hearing. For this purpose the envelope e(t) (or the rectified impulse
response | g(t) |) is convolved with exp (−t/τ). This corresponds to applying
the signal | g(t) | or e(t) to a simple RC network with the time constant τ. A
reasonable choice of the time constant τ is 25 ms.

In Fig. 8.8 a few experimental ‘reflectograms’ are shown as an example,
obtained at several places in a lecture room which was excited by short
impulses with a centre frequency of 3000 Hz and a duration of about 1 ms;
the frequency bandwidth was about 500 Hz. The lower trace of each regis-
tration shows the result of the smoothing described above. The total length
of an oscillogram corresponds to a time interval of 190 ms. The uppermost
reflectogram was taken at a place close to the sound source, consequently
the direct sound is relatively strong. The most outstanding feature in the
lowest oscillogram is the strong reflection delayed by about 40 ms with
regard to the direct sound. It is not heard as an echo, since it still lies within
the integration time of our ear (see Section 7.3).

Although the visual inspection of reflectograms is very suggestive it does
not permit a safe decision whether a reflection will be heard as an echo or
not. This can only be achieved by applying one of the echo criteria dis-
cussed in Section 7.3. About the same holds for a periodic train of reflec-
tions which can cause quite undesirable subjective effects even when the
periodic components are obscured by other non-periodically distributed
reflections and therefore cannot be detected simply by visual examination
of a reflectogram. Usually the periodic components are caused by repeated
reflections of sound rays between parallel walls, or generally in rooms with
a very regular shape, as for instance in rooms which are circular or regu-
larly polygonal in cross-section. At relatively short repetition times they are
perceived as colouration, at least under certain conditions (see Section 7.3).
But even a single dominating reflection may cause audible colouration,
especially of music, since the corresponding transmission function has a
regular structure or substructure.

The most adequate technique for testing the randomness or pseudo-
randomness of an impulse response is the autocorrelation analysis. In this
procedure all the irregularly distributed components are swept together
into a single central peak (see Fig. 8.6), whereas the remaining reflections
will form side components and satellite maxima in the autocorrelogram. In
order to decide the question of whether or not a certain side maximum
indicates audible colouration, we at first form, from the experimental
autocorrelation function φgg (in the preceding section referred to as Φ11), a
‘weighted auto-correlation function’:7

φ ′gg(τ) = b(τ)φgg(τ) (8.21)
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The weighting function b(τ) can be calculated from the thresholds repres-
ented in Fig. 7.11 and is shown in Fig. 8.9.

Let us denote by τ0 the value of the argument at which the side maximum
second to the central maximum (at t = 0) appears. Then we have to expect
audible colouration if

φ ′gg(τ0) > 0.06φ ′gg(0) (8.22)

no matter if this side maximum is caused by a single strong reflection or by
a periodic succession of reflections.8

The temporal structure of a room’s impulse response determines not only
the shape of the autocorrelation function obtained in this room but also its
modulation transfer function (MTF), which was introduced in Section 5.5.
Indeed, as was shown by M.R. Schroeder,9 the complex MTF for white
noise as a primary sound signal is related to the impulse response by
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This means, the complex modulation transfer is the Fourier transform of
the squared room impulse response [g(t)]2 divided by the integral over [g(t)]2.

Figure 8.9 Weighting function for autocorrelation functions with respect to
colouration.7
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Of course, this procedure can also be applied to an impulse response g′(t)
which has been confined to a suitable frequency band by bandpass filtering.

As described in Section 7.4, a reliable criterion for the intelligibility of
speech in auditoria, the ‘speech transmission index’ (STI), can be deduced
from the magnitude of the complex MTF, m = | c |. Unfortunately the
experimental determination of the modulation transfer function and the
evaluation of the speech transmission index is a relatively time-consuming
and complicated process. For this reason Houtgast and Steeneken10 have
developed a simplified version of the STI, called ‘RApid Speech Transmis-
sion Index’ (RASTI). It is obtained by measuring m for four modulation fre-
quencies Ω/2π in the octave band centred at 500 Hz, and for five modulation
frequencies in the 2000 Hz octave band. The applied modulation frequencies
range from 0.7 to 11.2 Hz. Each of the nine values of m is converted into
an ‘apparent signal-to-noise ratio’:

    
(S/N)app  log

  
=

−







10

1
10

m

m
(8.24)

These figures are averaged after truncating any which exceeds the range of
±15. The final parameter is obtained by normalising the average (7)app

into the range from 0 to 1:

RASTI =
  

1
30

[(7)app + 15] (8.25)

For practical RASTI measurements both octave bands are emitted simultan-
eously, each with a complex power envelope containing five modulation
frequencies. Likewise, the automated analysis of the received sound signal
is performed in parallel. With these provisions it is possible to keep the
duration of one measurement as low as about 12 s. By extensive investiga-
tions on the validity of RASTI, carried out in several countries (i.e. lan-
guages), the abovementioned authors were able to show that there is good
agreement between the results of RASTI and the more elaborate STI, and
furthermore that the RASTI method is well suited to rate the speech intelli-
gibility in auditoria. Table 8.2 shows the relation between five classes of
speech quality and certain intervals of RASTI values.

Table 8.2 Relation between scores of speech transmission quality and RASTI

Quality score RASTI

Bad <0.32
Poor 0.32–0.45
Fair 0.45–0.60
Good 0.60–0.75
Excellent >0.75



254 Room Acoustics

Table 8.3 Criteria for the assessment of acoustical qualities of rooms

Name of criterion Symbol Defined by equation

Definition (‘Deutlichkeit’) D 7.9
Clarity index (‘Klarheitsmaß’) C, C80 7.10
Centre time ts 7.12
Echo coefficient (‘Echograd’) ε 7.6
Echo criterion (Dietsch and Kraak) EC 7.7, 7.8
Speech transmission index STI Ref. 19 of Ch. 7
Reverberation time and early decay time T, EDT see Section 8.5
Strength factor G 7.15
Early lateral energy fraction LEF 7.18
Late lateral energy LG∞

80 7.21
Interaural cross correlation IACC 7.19

It goes without saying that all the parameters introduced in Chapter 7
can be evaluated from impulse responses by suitable operations. Table 8.3
lists these criteria along with the equations by which they are defined and
which can be used to compute them.

The experimental determination of the ‘early lateral energy fraction’ (LEF)
and the ‘late lateral energy’ (LG∞

80) requires the use of a gradient micro-
phone (figure-of-eight microphone) with its direction of minimum sensitiv-
ity directed towards the sound source. For measuring the ‘early lateral
energy fraction’, an additional non-directional microphone placed at the
same position as the gradient microphone is needed. In contrast, the nor-
malising term of LG∞

80, namely the denominator in eqn (7.21), is independ-
ent of the measuring position in the room and must be determined just once
for a given sound source. The ‘interaural cross correlation’ (IACC) is ob-
tained by cross-correlating the impulse responses describing the sound trans-
mission from the sound source to both ears of a human head. This can be
achieved by applying any of the methods described in Section 8.3. If such
measurements are carried out only occasionally, the responses can be ob-
tained with two small microphones fixed in the entrance of both ear chan-
nels of a person whose only function is to scatter the sound waves properly.
For routine work it is certainly more convenient to replace the human head
by an artificial head with built-in microphones.

8.5 Measurement of reverberation

For reasons which have been discussed earlier, Sabine’s reverberation time
is still the best known and most important quantity in room acoustics. This
fact is the justification for describing the measurement of this important
parameter in a separate section which includes that of its younger relative,
the ‘early decay time’ (EDT).

Although both the reverberation time of a room as well as the ‘early
decay time’ at a particular place in it can be derived from the corresponding
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Figure 8.10 Reverberation measurement by steady state excitation of the room.

impulse responses, we start by describing the more traditional methods
which still maintain their place in everyday practice. They are usually based
on the analysis of the decay process and hence on the evaluation of decay
curves. Accordingly, the first step of a decay measurement is to record
decay curves over a sufficiently large range of the decaying sound level.

The standard equipment for this purpose (which can be modified in many
ways) is depicted schematically in Fig. 8.10. A loudspeaker LS, driven by a
signal generator, excites the room to steady state conditions. The output
voltage of the microphone M is fed to an amplifier and filter F, and then to
a logarithmic recorder LR, whose deflection is calibrated in decibels. At a
given moment the excitation is interrupted by a switch, and at the same
time the recorder is triggered and starts to record the decay process.

The signal from the generator is either a frequency modulated sinusoidal
signal whose momentary frequency covers a narrow range or it is random
noise filtered by an octave or a third octave filter. The range of mid-
frequencies, for which reverberation time measurements are usually taken,
extends from about 50 to 10 000 Hz; most frequently, however, the range
from 100 to 5000 Hz is considered. As mentioned in Section 8.1, excitation
by a pistol shot is often a practical alternative. Pure sinusoidal tones are
used only occasionally, as for example to excite individual modes in the
range well below the Schroeder frequency, eqn (3.32).

The loudspeaker, or more generally the sound source, is usually placed at
the same location where, during normal use of the room, the natural sound
source is located. This applies not only to reverberation measurements but
also to other measurements. Because of the validity of the reciprocity prin-
ciple, however (see Section 3.1), the location of sound source and micro-
phone can be exchanged without altering the results, in cases where this is
practical and provided that the sound source and the microphone have no
directionality. In any case, it is important that the distance between the
sound source and the microphone is much larger than the reverberation
distance given by eqn (5.38), otherwise the direct sound would have an
undue influence on the shape of the decay curve.

If the sound field were completely diffuse, the decay curves should be
independent of the location of the sound source and the microphone. Since
these ideal conditions hardly ever exist in normal rooms, it is advisable to
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carry out several measurements for each frequency at different microphone
positions, as not only the reverberation time, which corresponds to the
average slope of a decay curve, but also other details of the curve may be
relevant to the acoustics of a hall or of a particular point in it. This is even
more important if the quantity to be evaluated is the early decay time which
may vary considerably from one place to the next within one hall.

The microphone is followed by a filter – usually an octave or third octave
filter – largely to improve the signal-to-noise ratio, i.e. to reduce the dis-
turbing effects of noise produced in the hall itself as well as that of the
microphone and amplifier noise. If the room is excited by a pistol shot or
another wide-band impulse, it is this filter which defines the frequency
discrimination and hence yields the frequency dependence of the reverbera-
tion time.

For recording the decay curves the conventional electromechanical level
recorder has been replaced nowadays by the digital computer, which con-
verts the sound pressure amplitude of the received signal into the instant-
aneous level. Usually, the level L(t) in the experimental decay curves does
not fall in a strictly linear way but contains random fluctuations which are
due, as explained in Section 3.5, to complicated interferences between de-
caying normal modes. If these fluctuations are not too strong, it is easy to
approximate the decay within the desired section by a straight line. In many
cases, this can be done visually. Any arbitrariness of evaluation is avoided,
however, if a ‘least square fit’ is carried out. Let t1 and t2 denote the interval
in which the decay curve is to be approximated (see Fig. 8.11), then the
following integrations must be performed:

Figure 8.11 Approximation of a logarithmic decay curve by a straight line within
limits t1 and t2.
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This procedure is particularly recommended for the evaluation of the ‘early
decay time’.

In any case, the slope of the decay curve (or its approximation) is related
to the reverberation time by
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The quasi-random fluctuations of decay level and the associated uncertain-
ties about the true shape of a decay curve can be avoided, in principle, by
averaging over a great number of individual reverberation curves, each of
which was obtained by random noise excitation of the room. Fortunately
this very time-consuming procedure will lead to the same result as another
much more elegant method, called ‘backward integration’, which was pro-
posed and first applied by Schroeder.11 It is based on the following relation-
ship between the ensemble average 〈h2(t)〉 of all possible decay curves (for a
certain place and bandwidth of exciting noise) and the corresponding im-
pulse response g(t):

〈h2(t)〉 =
    
�

t

∞

[g(x)]2 dx =
    
�

0

∞

[g(x)]2 dx −
      
�

0

t

[g(x)]2 dx (8.28)

The proof of this relation is similar to that of eqn (8.15). Suppose the
room is excited by white noise r(t), which is switched off at the time t = 0.
According to eqn (1.44), the sound decay is given by

h(t) =
    
�

−∞

0

r(x)g(t − x) dx =
    
�

t

∞

g(x)r(t − x) dx for t ≥ 0

Squaring the latter expression yields a double integral, which after aver-
aging reads

〈h2(t)〉 = �g(x) dx �g(y)〈r(t − x)r(t − y)〉 dy
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Figure 8.12 Examples of experimentally obtained reverberation curves: (a)
recorded according to Fig. 8.10; (b) recorded by application of eqn (8.28).

The brackets 〈 〉 on the right-hand side indicate that an ensemble average is
to be formed which is identical with the autocorrelation function of r(t)
with the argument x − y. Now the autocorrelation function of white noise
is a delta function. Invoking eqn (1.42) shows immediately that the double
integral is reduced to the single integral of eqn (8.28). This derivation is
valid no matter whether the impulse response is that measured for the full
frequency range or only of a part of it.

The merits of this method may be underlined by the examples shown in
Fig. 8.12. The upper decay curves have been measured with the traditional
method, i.e. with random noise excitation, according to Fig. 8.10. They
exhibit strong fluctuations of the decaying level which do not reflect any
acoustical properties of the transmission path and hence of the room, but
are due to the random character of the exciting signal; if one of these
recordings were repeated, each new decay curve would differ from the
preceding one in many details. In contrast, the lower curves, obtained for
different conditions by processing the impulse responses according to eqn
(8.28), are free of such confusing fluctuations and hence contain only sig-
nificant information. Repeated measurements for one situation yield ident-
ical results,12 which is not too surprising since these decay curves are based
on an exactly reproducible characteristic, namely the impulse response. It is
clear that the reverberation time can be obtained from such curves with
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Figure 8.13 Effect of noise (T = 2 s) processed with backward integration method.
The noise level is −41.4 dB. Parameter: upper integration limit t0.

much greater accuracy than from those recorded in the traditional way,
which is even more true for the ‘early decay time’. Furthermore, any char-
acteristic deviations of the sound decay from exponential behaviour are
much more obvious (see, for instance, the third curve in Fig. 8.12).

For the practical execution of the integration in eqn (8.28), the upper
limit ∞ must be replaced with a suitable finite value, say t∞, which, how-
ever, is not uncritical because in every experimental set-up there is some
acoustical or electrical background noise. Its effect on basically linear decay
curves corresponding to a reverberation time T = 2s is demonstrated by
Fig. 8.13. If the limit t∞ is too long, the decay curve will have a tail which
limits the useful dynamic range, too short an integration time will cause an
early downward bend of the curve, which is also awkward. Obviously,
there exists an optimum for t∞ which depends on the relative noise level and
the decay time.

 For evaluating the reverberation time, the slope of the decay curve is
frequently determined in the level range from −5 to −35 dB relative to the
initial level. This procedure is intended to improve the comparability and
reproducibility of reverberation times in such cases where the fall in level
does not occur linearly. It is doubtful, however, whether the evaluation of
an average slope from curves which are noticeably bent is very meaningful,
or whether the evaluation should rather be restricted to their initial parts,
i.e. to the EDT which is anyway a more reliable indicator of the subjective
impression of reverberance than Sabine’s reverberation time. The same ap-
plies if the absorption coefficient of a test material is to be determined from
reverberation measurements (Section 8.7) since the initial slope is closely
related to the average damping constant of all excited normal modes (see
eqn (3.44a)).
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We conclude this section by mentioning that the absorption of a room
and hence its reverberation time could be obtained, at least in principle,
from the steady state sound level or energy density according to eqn (5.37).
Likewise, the modulation transfer function could be used to determine the
reverberation time (see eqn (5.36a)). In practice, however, these methods
do not offer any advantages compared to those described above, since they
are certainly more time consuming and less accurate.

8.6 Sound absorption – tube methods

The knowledge of sound absorption of typical building materials, etc., is
indispensable for all tasks related to room acoustical design, i.e. for the
prediction of reverberation times in the planning phase of auditoria and
other rooms, for model experiments (see Section 9.5), for the acoustical
computer simulation of environments and other purposes.

Basically, there are two standard methods of measuring absorption
coefficients, namely by plane waves travelling in a rigid tube, and by employ-
ing a reverberation chamber. In this section the first one will be described.
It is restricted to the examination of locally reacting materials with a plane
or nearly plane surface, and also to normal wave incidence onto the test
specimen.

 A typical set-up is shown in Fig. 8.14. The tube is a pipe with a rigid
wall and a rectangular or circular cross-section. At one of its ends, there is
a loudspeaker which generates a sinusoidal sound signal. This signal travels
along the tube as a plane wave towards the test specimen which terminates
the other end of the tube and which must be arranged in the same way as it
is to be used in practice, for example at some distance in front of a rigid
wall. To reduce tube resonances it may be useful (although not essential for
the principle of the method) to place an absorbing termination in front of

Figure 8.14 Conventional impedance tube, schematic.
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the loudspeaker. The test sample reflects the incident wave more or less,
leading to the formation of a partially standing wave as described in Sec-
tion 2.2. The sound pressure maxima and minima of this wave are meas-
ured by a movable probe microphone, which must be small enough not to
distort the sound field to any great extent. As an alternative to the arrange-
ment shown, a miniature microphone mounted on the tip of a thin movable
rod may be employed as well.

The tube should be long enough to permit the formation of at least one
maximum and one minimum of the pressure distribution at the lowest
frequency of interest. Its lateral dimensions have to be chosen in such a way
that at the highest measuring frequency they are still smaller than a certain
fraction of the wavelength λmin. Or, more exactly, the following require-
ments must be met:

Dimension of the wider side < 0.5λmin for rectangular tubes
Diameter < 0.586λmin for circular tubes (8.29)

Otherwise, apart from the appearance of an essentially plane fundamental
wave propagating at free field sound velocity of the medium, higher order
wave types may occur with non-constant lateral pressure distributions and
with different and frequency-dependent sound velocities. On the other hand,
the cross-section of the tube must not be too small, since otherwise the
wave attenuation due to losses at the wall surface would become too high.
Generally at least two tubes of different dimensions are needed in order to
cover the frequency range from about 100 to 5000 Hz.

For the determination of the absorption coefficient it is sufficient to meas-
ure the maximum and the minimum values of the sound pressure ampli-
tudes, i.e. the pressures in the nodes and the anti-nodes of the standing
wave. According to eqns (2.9) and (2.1), the absolute value of the reflection
factor and the absorption coefficient are obtained by
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If possible, the maxima and minima closest to the test specimen should be
used for the evaluation of R and α since these values are influenced least by
the attenuation of the waves. It is possible, however, to eliminate this influ-
ence by interpolation or by calculation, but in most cases it is hardly worth-
while doing this.

The absorption coefficient is not the only quantity which can be obtained
by probing the standing wave; additional information can be derived from
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Figure 8.15 Smith chart (circles of constant real part ξ and imaginary part η of
the specific impedance ζ represented in the complex R-plane).

the location of the pressure maximum (pressure node) which is next to the
test specimen. According to eqn (2.9), the condition for the occurrence of a
pressure node is cos (2kx + χ) = −1. If xmin is the distance of the nearest
pressure node from the surface of the sample, this condition yields for the
phase angle χ of the reflection factor

    
χ π

λ
    min= −







1

4x
(8.32)

Once the complex reflection factor is known, the wall impedance Z or the
specific impedance ζ of the material under test can be obtained by eqns
(2.6) and (2.2a), for instance by applying a graphical representation of
these relations known as a ‘Smith chart’ (see Fig. 8.15). Furthermore, the
specific impedance of the sample can be used to determine its absorption
coefficient αuni for random sound incidence, either from Fig. 2.11 or by
applying eqn (2.42). In many practical situations this latter absorption co-
efficient is more relevant than that for normal sound incidence. However,
the result of this procedure will be correct only if the material under test
can be assumed to be of the ‘locally reacting’ type (see Section 2.3).
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Several attempts have been made to replace the somewhat involved and
time-consuming standing wave method by faster and more modern proced-
ures using fixed microphone positions. For steady state test signals the
separation of the reflected wave from the incident one can be achieved with
microphones which may be mounted flush into the wall of the tube as
shown in Fig. 8.16. Let S(f ) denote the spectrum of the signal emitted by
the loudspeaker, for instance of random noise. Then the spectra of the
sound signals received at both microphone positions are

S1( f ) = S(f )[exp (ikd) + R(f ) exp (−ikd)]

S2( f ) = S(f ){[exp [ik(d + ∆)] + R(f ) exp [(−ik(d + ∆)]]}

with k = 2πf/c. Here d is the distance of microphone 1 from the surface of
the sample under test, and ∆ denotes the distance between both micro-
phones. From these equations, the complex reflection factor is easily ob-
tained as
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with H12 = S2/S1 denoting the transfer function between both microphone
positions. Critical are those frequencies for which | exp (ik∆) | is close to
unity, i.e. the distance ∆ is about an integer multiple of half the wavelength.
In such regions the accuracy of measurement is not satisfactory. This prob-
lem can be circumvented by providing for a third microphone position.
Of course, the relative sensitivities of all microphones must be taken into
account, or the same microphone is used to measure S1 and S2 successively.

If a short impulse is used as a test signal, the measurement can be carried
out with one microphone only since the incident and the reflected wave
produce relatively short signals which can be separated by proper time

Figure 8.16  Impedance tube with two fixed microphones.
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Figure 8.17 In situ measurement of acoustical wall properties: (a) experimental
set-up; (b) sequence of reflections. Reflection 2 is separated by a time window
(from Mommertz12).

windows. If s(t) denotes the signal produced by the loudspeaker, the re-
flected signal is

s′(t) = r(t)*s(t − 2d/c)
      
= ′ − ′ −
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where d is the distance of the microphone from the surface of the test
specimen, and r(t) is the ‘reflection response’ of the test material as already
introduced in Section 4.1. As explained in Section 8.2, the ‘deconvolution’
needed to remove the influence of the original signal in eqn (8.34) is most
conveniently performed in the frequency domain. After Fourier transforma-
tion, eqn (8.34) reads:

S′(f ) = R(f )S(f ) exp (−2ikd)  (8.34a)

from which the complex reflection factor is easily obtained provided the
signal spectrum S(f ) has no zeros in the considered frequency range. The
signal-to-noise ratio is greatly improved by replacing the test impulse by a
signal which can be deconvolved to an impulse, for instance by maximum
length sequences as described in Section 8.2.

In order to separate safely the reflected signal from the primary one
the latter must be sufficiently short, and the distance d of the microphone
from the sample must be large enough. The same holds for any reflections
from the loudspeker. This may lead to impractically long tubes. An altern-
ative is to omit the tube, as depicted in Fig. 8.17 which can be used for
remote measurement of acoustical wall and ceiling properties in existing
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enclosures, i.e. for in situ measurements. In this case, however, the waves
are not plane but spherical. For this reason the results may be not too exact
because the reflection of spherical waves is different from that of plane
waves. Furthermore, the 1/r law of spherical wave propagation has to be
accounted for by proper correction terms in eqn (8.34a). Further refinements
of this useful method are described in Ref. 12.

8.7 Sound absorption – reverberation chamber

In a way, the reverberation method of absorption measurement is superior
to the impedance tube method. First of all, the measurement is performed
with a diffuse sound field, i.e. under conditions which are much more real-
istic for many practical applications than those encountered in a one-
dimensional waveguide. Secondly, there are no limitations concerning the
type and construction of the absorber. This means the reverberation method
is well suited for measuring the absorption coefficient of almost any type
of wall linings and of ceilings, but as well to determine the absorption of
single or blocks of seats, unoccupied or occupied.

A so-called reverberation chamber is required for the method discussed
here. This is a small room with a volume of at least 100 m3, better still 200
to 300 m3, whose walls are as smooth and rigid as possible. The absorption
coefficient α0 of the bare walls, which should be uniform in construction
and finish, is determined by reverberation measurements in the empty cham-
ber and by application of one of the reverberation formulae. (Usually the
Sabine formula
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(V = volume in m3, S = wall area in m2)

is sufficient for this purpose.) Then a certain amount of the material under
investigation (or a certain number of absorbers) is brought into the cham-
ber; the test material should be mounted in the same way as it would be
applied in the practical case. The reverberation time is decreased by the test
specimen and by applying once more the reverberation formula preferably
in the Eyring version
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with

    
n  [   (   ) ]= + −

1
0

S
S S Ss sα α (8.36a)



266 Room Acoustics

the absorption coefficient α is easily calculated (Ss is the area of the test
sample). In the case of single absorbers, the first term on the right-hand side
of eqn (8.36a) is replaced by the number of absorbers times the absorption
cross-section of one absorber (see Section 6.5), and Ss is set zero.

When applying the reverberation formulae, the air absorption term 4mV
can usually be neglected, since it is contained in the absorption of the
empty chamber as well as in that of the chamber containing the test mater-
ial and therefore will almost cancel out. Because the chamber has a small
volume the effect of air attenuation is low anyway.

The techniques of reverberation measurement itself have been described
in detail in Section 8.5, and therefore no further discussion on this point is
necessary. Usually, absorption measurements in the reverberation chamber
are performed with frequency bands of third octave bandwidth.

The advantages of the reverberation method as mentioned at the begin-
ning of this section are paid for by a considerable uncertainty concerning
the reliability and accuracy of results obtained with it. In fact, several round
robin tests13,14 in which the same specimen of an absorbing material has
been tested in different laboratories (and consequently with different rever-
beration chambers) have revealed a remarkable disagreement in the results.
This must certainly be attributed to different degrees of sound field diffu-
sion established in the various chambers and shows that increased attention
must be paid to the methods of enforcing sufficient diffusion.

A first step towards sufficient sound field diffusion is to design the rever-
beration chamber without parallel pairs of walls and thus avoid sound
waves which can be reflected repeatedly between two particular walls with-
out being influenced by the remaining ones.

Among all further methods to achieve a diffuse sound field the introduc-
tion of volume scatterers as described in Section 5.1 seems to be most
adequate for reverberation chambers, since an existing arrangement of scat-
terers can easily be changed if it does not prove satisfactory. Practically,
such scatterers can be realised as bent shells of wood, plastics or metal
which are suspended from the ceiling by cables in an irregular arrangement
(see, for instance, Fig. 8.18). If necessary, bending resonances of these shells
should be damped by applying layers of lossy material onto them. It should
be noted, however, that too many diffusers may also affect the validity of
the usual reverberation formulae and that therefore the density of scatterers
has a certain optimum.15 If H is the distance of the test specimen from the
wall opposite to it, this optimum range is about

0.5 < 〈n〉QsH < 2 (8.37)

with 〈n〉 and Qs denoting the density and the scattering cross-section of the
diffusers introduced at the end of Section 5.1. This condition has also been
proven experimentally.16 For not too low frequencies the scattering cross-
section Qs is roughly half the geometrical area of one side of a shell.
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Figure 8.18 Reverberation chamber fitted out with 25 diffusers of perspex
(volume 324 m3; dimensions of one shell 1.54 m × 1.28 m).

Systematic errors of the reverberation method may also be caused by the
so-called ‘edge effect’ of absorbing materials. If an absorbing area has free
edges, it will usually absorb more sound energy per second than is propor-
tional to its geometrical area, the difference being caused by diffraction of
sound into the absorbing area. Formally, this effect can be accounted for by
introducing an ‘effective absorption coefficient’:17
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αeff = α∞ + βL′ (8.38)

α∞ is the absorption coefficient of the unbounded test material and L′ de-
notes the total length of the edges divided by the area of the actual sample.
The factor β depends on the frequency and the type of material. It may be
as high as 0.2 m or more and can be determined experimentally using test
pieces of different sizes and shapes. In rare cases, β may even turn out
slightly negative. A comprehensive treatment of the edge effect can be found
in Ref. 1 of Chapter 6.

In principle, this kind of edge effect in absorption measurements can be
avoided by covering one wall of the reverberation chamber completely with
the material to be tested, since then there will be no free edges. However,
the adjacent rigid or nearly rigid walls cause another, although less serious,
edge effect, sometimes referred to as ‘Waterhouse effect’.18 According to
eqn (2.38) (see also Fig. 2.10), the square of the sound pressure amplitude
in front of a rigid wall exceeds its value far from the wall, and the same
holds for the energy absorbed per unit time and area by the test specimen
which perpendicularly adjoins that wall. This effect can be corrected for by
replacing the geometrical area S of the test specimen with

Seff = S(1 +
  
1
8

L′λ) (8.39)

λ is the wavelength corresponding to the middle frequency of the selected
frequency band, λ = c/fm.

Finally, a remark may be appropriate on the frequency range in which a
given reverberation chamber can be used. If the linear chamber dimensions
are equal to a few wavelengths only, then statistical reverberation theories
can no longer be applied to the decay process and hence to the process of
sound absorption. Likewise, a diffuse sound field cannot be established
when the number and density of eigenfrequencies (see Section 3.2) are small.
It has been found experimentally that absorption measurements employing
reverberation chambers are only meaningful for frequencies higher than
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where the room volume V has to be expressed in m3 and the frequency
in Hz.

8.8 Diffusion

As pointed out by the end of Section 5.1, the term ‘diffusion’ denotes two
conceptually different things in acoustics: firstly a property of sound fields,
namely the isotropy or directional uniformity of sound propagation, and
secondly, a property of surfaces, namely their ability to scatter incident sound
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into non-specular directions as described in Section 2.6. Although sound
field diffusion may be a consequence of diffusely reflecting boundaries,
both items must be well distinguished.

The directional distribution of sound intensity in a sound field is charac-
terised by a function I(ϕ, ϑ). This quantity can be measured by scanning all
directions with a directional microphone of sufficiently high resolution. Let
Γ(ϕ, ϑ) be the directivity function, i.e. the relative sensitivity of the micro-
phone as a function of angles ϕ and ϑ, from which a plane wave reaches it,
then the squared output voltage of the microphone in a complicated sound
field is proportional to

I′(ϕ, ϑ) = ��I(ϕ′, ϑ′)| Γ(ϕ − ϕ′, ϑ − ϑ ′) |2 sin ϑ′ dϑ′ dϕ′ (8.41)

Only if the microphone has a high directionality, i.e. if Γ(ϕ, ϑ) has substan-
tial values only within a very limited solid angle, is there a virtual agree-
ment between the measured and the actual directional distribution; in all
other cases irregularities of the distribution are more or less smoothed out.

The measurement is usually performed using a stationary sound source
which emits filtered random noise or warble tones (frequency modulated
sinusoidal tones). It is much more time consuming to determine experiment-
ally the directional distribution in a decaying sound field by recording the
same decay process at many different orientations of the directional micro-
phone and to compare subsequently the intensities obtained at correspond-
ing times relative to the arrival of the direct sound or to the moment at
which the sound source was interrupted.

Quantitatively, the degree of approximation to perfectly diffuse condi-
tions can be characterised by ‘directional diffusion’ defined according to
Thiele19 in the following way. Let 〈I′〉 be the measured quantity averaged
over all directions and
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the average of the absolute deviation from it. Furthermore, let m0 be the
quantity formed analogously to m by replacing I′ in eqn (8.41) by | Γ |2.
Then the directional diffusion is
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The introduction of m0 effects a certain normalisation and consequently
d = 100% in a perfectly diffuse sound field, whereas in the sound field
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Figure 8.19 Derivation of eqns (8.45a–c).

consisting of one single plane wave the directional diffusion becomes zero.
This procedure, however, does not eliminate the fact that the result still
depends on the directional characteristics of the microphone. Therefore
such results can only be compared if they have been gained by means of
similar microphones. Numerous results on the directional distribution meas-
ured in this way can be found in papers published by Meyer and Thiele20

and by Junius.21

If one is not interested in all the details of the directional distribution but
only in a measure for its uniformity, more indirect methods can be applied,
i.e. one can measure a quantity whose value depends on diffusion. One of
these quantities is the correlation of the steady state sound pressure at two
different points, which yields characteristic values in a diffuse sound field.
Or more precisely: we consider the correlation coefficient Ψ of two sound
pressures p1 and p2, defined by eqn (7.17)
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To calculate the correlation coefficient in the case of a diffuse sound field
we assume that the room is excited by random noise with a very small
bandwidth. The sound field can be considered to be composed of plane
waves with equal amplitudes and randomly distributed phase angles ψn.
The sound pressures due to one such wave at points 1 and 2 at distance x
(see Fig. 8.19), is

p1(t) = A cos (ω t − ψn), p2(t) = A cos (ωt − ψn − kx cos ϑn)

Hence
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Furthermore, we obtain for the time average of the product of both pressures
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Inserting these expressions into eqn (8.44) leads to a direction-dependent
correlation coefficient, which has to be averaged subsequently with con-
stant weight (corresponding to complete diffusion) over all possible direc-
tions of incidence. This yields
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= (8.45a)

If, however, the directions of incident sound waves are not uniformly dis-
tributed over the entire solid angle but only in a plane containing both
points, we obtain, instead of eqn (8.45a),

Ψ(x) = J0(kx) (8.45b)

( J0 = Bessel function of order zero).
If the connection between both points is perpendicular to the plane of

two-dimensional diffusion, the result is

Ψ(x) = 1 (8.45c)

The functions given by eqns (8.45a) to (8.45c) are plotted in Fig. 8.20. The
most important is curve a; each deviation of the measured correlation coef-
ficient Ψ from this curve hints at a lack of diffusion. To avoid any ambigu-
ity Ψ should be measured for three substantially different orientations of
the axis connecting points 1 and 2 in Fig. 8.19.

The derivation presented above is strictly valid only for signals with
vanishing frequency bandwidths. Practically, however, its result can be
applied with sufficient accuracy to signals with bandwidths of up to a third
octave. For wider frequency bands an additional frequency averaging of
eqn (8.45a) is necessary.

The correlation coefficient Ψ is the cross-correlation function     φ τp p1 2
( )  at

τ = 0 (see eqn (1.40)), divided by the root-mean-square values of p1 and p2.
In practical situations the maximum of     φp p1 2

 may occur at a slightly differ-
ent value of τ, due to delays in the signal paths. Therefore it is advisable to
observe the cross-correlation function in the vicinity of τ = 0 in order to
catch its maximum. This can be achieved by one of the methods discussed
in Section 8.3.
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Figure 8.20 Theoretical dependence of correlation coefficient Ψ on the distance
between both measuring points: (a) in a three-dimensional diffuse sound field;
(b) in a two-dimensional diffuse sound field, measuring axis in plane of directions
of sound incidence; (c) same as (b) but measuring axis perpendicular to sound
propagation.

An even simpler method is to measure the squared sound pressure ampli-
tude in front of a sufficiently rigid wall as a function of the distance as
discussed in Section 2.5. In fact, eqn (8.45a) agrees – apart from a factor 2
in the argument – with the second term of eqn (2.38) which describes the
pressure fluctuations in front of a rigid wall at random sound incidence.
This similarity is not merely accidental, since these fluctuations are caused
by interference of the incident and the reflected waves which become less
distinct with increasing distance from the wall according to the decreasing
coherence of those waves. On the other hand, it is just the correlation
factor of eqn (8.44) which characterises the degree of coherence of two
signals. The additional factor of 2 in the argument of eqn (2.38) is due to
the fact that the distance of both observation points here is equivalent to
the distance of the point from its image, the rigid wall being considered as
a mirror.

Now we turn to the second subject of this section, the diffuse reflectivity
of surfaces. The direct way to measure it is to irradiate a test specimen of
the considered surface with a sound wave under a certain angle of incidence
and to record the sound reflected (or scattered) into the various directions
by swivelling a microphone at fixed distance around the specimen. In many
cases, of course, this measurement must be carried out with scale models of
the surfaces under investigation. Its result is a scattering diagram or a col-
lection of scattering diagrams in which the scattered sound components can
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Figure 8.21 Experimental set-up for measuring scattering from rough surfaces.

be separated from the specular one. It seems that Meyer and Bohn22 were
the first to employ this time consuming procedure to investigate the scatter-
ing of surfaces with regular corrugations. The scattering characteristics from
another object, namely an irregularly structured ceiling, are shown in
Fig. 2.14.

Very often one is interested not so much in scattering diagrams but in a
figure which characterises the diffuse reflectivity of a wall. For this purpose,
in Section 5.1 the total reflected energy was split up into the fractions s and
1 − s denoting relative energies of the specularly and the diffusely reflected
components, respectively. Our present goal is to describe procedures for
measuring the quantity
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where I0 and Ispec denote the intensities of the incident and the specularly re-
flected wave, respectively. α is the absorption coefficient of the test specimen.

Vorländer and his co-workers23,24 have developed an efficient method to
determine s. A sound source and a microphone are adjusted in such a way
that the latter picks up the specular reflection from the test specimen which
is placed on a turntable (Fig. 8.21). Then the complex reflection factor of
the sample is measured at many different positions of the turntable, each
result being different from the preceding one since different amounts of
energy are scattered into non-specular directions. These individual differ-
ences can be suppressed by averaging all these results. This average, 〈R(f )〉,
is the specular reflection factor and hence

〈R( f )〉2 = s(1 − α) (8.47)

In a second method which is due to Mommertz and Vorländer25 the test
specimen on its turntable is placed in an otherwise empty reverberation
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chamber. Now n impulse responses g1(t), g2(t), . . . gn(t) are measured at
slightly different positions of the sample. Each of them consists of an in-
variable part g0 and a part g ′ which differs from one measurement to the
other, gi(t) = g0(t) + g ′i(t). Hence the sum of all these impulse responses is
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The last term on the right-hand side is a random variable being itself com-
posed of n independent random variables. Hence its variance is n times the
variance of g ′, while its mean value is zero. As a consequence, the expecta-
tion value 〈h〉 of h is ng0, and its variance reads

〈h2〉 − 〈h〉2 = n〈g ′2〉

from which follows

〈h2〉 = n2[ g0(t)]
2 + n〈[g ′(t)]2〉 (8.48)

This function describes the decay of the energy contained in the sum of all
impulse responses. It consists of two parts with different decay constants
and which depend in a different manner on the number of measurements n:

〈h2〉 ∝ n exp (−2δ1t) + exp (−2δ2t) (8.49)

The decay of the variable part of the impulse responses, i.e. of the second
term in eqn (8.48), is determined by the sound absorption present in the
reverberation chamber, hence
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where V denotes the volume of the chamber and S is the area of its bound-
ary with the absorption coefficient α0; Ss and αs are the area and the absorp-
tion coefficient of the sample, respectively. The first term of eqn (8.48)
decays faster because the scattering sample removes additional energy in an
irreversible way:
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In Fig. 8.22 several logarithmic decay curves are plotted. The parameter is
n, the number of individual decays from which the averaged decay has been
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Figure 8.22 Averaged decay curves. Here n is the number of individual decays
from which the average has been formed (measurement performed in a model
reverberation chamber, see Vorländer and Mommertz26).

Figure 8.23 Scattering coefficients δ = 1 − s of irregular arrangements of
battens on a plane panel as a function of frequency. —�—, free field method;
—�—, reverberation method. Left side: rectangular cross-section (side length 2 cm).
Right side: semicircular cross-section (diameter 2 cm) (after Mommertz and
Vorländer25).

formed. With increasing n, the initial slope corresponding to the average
decay constant
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for n >> 1

becomes more prominent. If the number n of decays is high enough both
decay constants δ1 and δ2 can be unambiguously evaluated, particularly if
the backward integration technique (see Section 8.5) is applied. From their
difference the ‘specular reflection ratio’ s is easily calculated.

As an example, Fig. 8.23 represents experimental data of the ‘scattering
coefficient’ 1 − s obtained with the direct method (averaged over all direc-
tions of incidence) and with the reverberation method. The objects were
battens with quadratic or semicylindrical cross-section (side length or
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diameter 2 cm) irregularly mounted on a plane panel. The agreement of
both results is obvious.
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9 Design considerations and
design procedures

The purpose of this chapter is to describe and to discuss some more prac-
tical aspects of room acoustics, namely the acoustical design of auditoria in
which some kind of performance (lectures, music, theatre, etc.) is to be
presented to an audience, or of spaces in which the reduction of noise levels
is of most interest. Its contents are not just an extension of fundamental
laws and scientific insights towards the practical world, nor are they a
collection of guidelines and rules deduced from them. In fact, the reader
should be aware that the art of room acoustical design is only partially
based on theoretical considerations, and that it cannot be learned from this
or any other book but that successful work in this field requires consider-
able practical experience. On the other hand, mere experience without at
least some insight into the physics of sound fields and without certain know-
ledge of psychoacoustic facts is of little worth, or is even dangerous in that
it may lead to unacceptable generalisations.

Usually the practical work of an acoustic consultant starts with drawings
being presented to him which show the details of a hall or some other room
which is at the planning stage or under construction, or even one which is
already in existence and in full use. First of all, he must ascertain the pur-
pose for which the hall is to be used, i.e. which type of performances or
presentations are to take place in it. This is more difficult than appears at
first sight, as the economic necessities sometimes clash with the original
ideas of the owner or the architects. Secondly, he must gain some idea of
the objective structure of the sound field to be expected, for instance the
values of the parameters characterising the acoustical behaviour of the room.
Thirdly, he must decide whether or not the result of his investigations
favours the intended use of the room; and finally, if necessary, he must
work out proposals for changes or measures which are aimed at improving
the acoustics, keeping in mind that these may be very costly or may sub-
stantially modify the architect’s original ideas and therefore have to be
given very careful consideration.

In order to solve these tasks there is so far no generally accepted proced-
ure which would lead with absolute certainty to a good result. Perhaps it is
too much to expect there ever to be the possibility of such a ‘recipe’, since
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one project is usually different from the next due to the efforts of architects
and owners to create something quite new and original in each theatre or
concert hall.

Nevertheless, a few standard methods of acoustical design have been
evolved which have proven useful and which can be applied in virtually
every case. The importance which the acoustic consultant will attribute to
one or the other, the practical consequences which he will draw from his
examination, whether he favours reverberation calculations more than geo-
metrical considerations or vice versa – all this is left entirely to him, to his
skill and to his experience. It is a fact, however, that an excellent result
requires close and trustful cooperation with the architect – and a certain
amount of luck too.

As we have seen in preceding chapters, there are a few objective, sound
field properties which are beyond question regarding their importance for
what we call good or poor acoustics of a hall, namely the strength of the
direct sound, the temporal and directional distribution of the early sound
energy, and the duration of reverberation processes. These properties de-
pend on constructional data, in particular on the

(a) shape of the room;
(b) volume of the room;
(c) number of seats and their arrangement;
(d) materials of walls, ceiling, floor, seats, etc.

While the reverberation time is determined by factors (b) to (d) and not
significantly by the room shape, the latter influences strongly the number,
directions, delays and strengths of the early reflections received at a given
position or seat. The strength of the direct sound depends on the distances
to be covered, and also on the arrangement of the audience.

In the following discussion we shall start with the last point, namely with
factors which determine the strength of the direct sound in a hall.

9.1 Direct sound

The direct sound signal arriving from the sound source to a listener along a
straight line is not influenced at all by the walls or the ceiling of a room.
Nevertheless, its strength depends on the geometrical data of the hall, namely
on the (average) length of paths which it has to travel, and on the height at
which it propagates over the audience until it reaches a particular listener.

Of course the direct sound intensity under otherwise constant conditions
is higher, the closer the listener is seated to the sound source. Different
plans of halls can be compared in this respect by a dimensionless figure of
merit, which is the average distance of all listeners from the sound source
divided by the square root of the area occupied by audience. For illustration,
in Fig. 9.1 a few types of floor plans are shown; the numbers indicate this
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Figure 9.1 Normalised average distance from listeners to source for various room
shapes.

Figure 9.2 Reduction of direct sound attenuation by sloping the seating area:
(a) constant slope; (b) increasing slope.

normalised average distance. The audience areas are shaded and the sound
source is denoted by a point.

It is seen that a long rectangular room with the sound source on its short
side seats the listeners relatively far from the source, whereas a room with a
semicircular floor plan provides particularly short direct sound paths. For
the same reason, many large lecture theatres and session halls of parlia-
ments are of this type. This is probably the reason why most ancient am-
phitheatres have been given this shape by their builders. (The same figure
holds for any circular sector i.e. also for the full circle.) However, for a
closed room this shape has specific acoustical risks in that it concentrates
the sound reflected from the rear wall toward certain regions. Generally
considerations of this sort should not be given too much weight since they
are only concerned with one aspect of acoustics which may conflict with
other ones.

Attenuation of the direct sound due to grazing propagation over the heads
of the audience (see Section 6.7) can be reduced or avoided by sloping the
audience area upwardly instead of arranging the seats on a horizontal floor.
This holds also for the attenuation of side or front wall reflections. A con-
stant slope (see Fig. 9.2a) is less favourable than an increasing ascent of the
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audience area. The optimum slope (which is optimal as well with respect to
the listeners’ visual contact with the stage) is reached if all sound rays
originating from the sound source S strike the audience area at the same
incidence angle ϑ (see Fig. 9.2b). The mathematical expression for this
condition, which can be strictly fulfilled only for one particular source
position, is

r(ϕ) = r0 exp (ϕ tan ϑ) (9.1)

In this formula r(ϕ) is the length of the sound ray leaving the source under
an elevation angle ϕ and r0 is a constant. The curve it describes is a logar-
ithmic spiral. The requirement of constant angle of incidence is roughly
equivalent to that of constant ‘sight-line distance’, by which term we mean
the vertical distance of a ray from the end of the ray beneath it. A reason-
able value for this distance is about 10 cm, of course higher values are even
more favourable. However, a gradually increasing slope of the seating area
has certain practical disadvantages. They can be circumvented by approx-
imating the sloping function of eqn (9.1) by a few straight sections, i.e. by
subdividing the audience area in a few blocks with uniform seating rake
within each of them.

Front seats on galleries or balconies are generally well supplied with
direct sound since they do not suffer at all from sound attenuation due to
listeners sitting immediately in front. This is one of the reasons why seats
on galleries or in elevated boxes are often known for excellent listening
conditions.

9.2 Examination of the room shape with regard to reflections

As already mentioned, the delay times, the strengths and the directions of
incidence of the reflections – and in particular of early reflections – are
determined by the position and the orientation of reflecting areas, i.e. by
the shape of a room. Since these properties of reflected sound portions are
to a high degree responsible for good or poor acoustics, it is indispensable
to investigate the shape of a room carefully in order to get a survey on the
reflections produced by the enclosure.

A simple way to obtain this survey is to trace the paths of sound rays
which emerge from an assumed sound source, using drawings of the room
under consideration. In most cases the assumption of specular reflections is
more or less justified.

The sound rays after reflection from a wall portion can be found very
easily if the enclosure is made up of plane boundaries; then the con-
cept of image sound sources as described in Chapter 4 can be applied
with advantage. This procedure, however, is feasible for first-order or at
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Figure 9.3 Construction of sound ray paths in the longitudinal section of a
hypothetical hall.

best for second-order reflections only, which on the other hand is often
sufficient.

For curved walls the method of image sources cannot be applied. Here
we have to determine the tangential plane (or the normal) of each element-
ary area of interest and to consider the reflection from this plane. A schem-
atic example of sound ray construction is presented in Fig. 9.3.

From the constructed sound paths one can usually establish very quickly
whether the reflected sound rays are being concentrated on some point or
in a limited region, and where a focal point or a caustic is to be expected. If
a sufficiently large portion of a wall or the ceiling has a circular shape in
the sectional drawing or can be approximated by a circle, the location of
the focus associated with it may be found from eqn (4.18). Furthermore, the
directions of incidence onto various seats can be seen immediately, whereas
the delay time between a reflection with respect to the direct sound is
determined from the difference in path lengths after dividing the latter by
the sound velocity.

The decision whether a particular reflection will be perceivable at all,
whether it will contribute to speech intelligibility, to ‘clarity’ or to ‘spacious-
ness’, or whether it will be heard as a disturbing echo requires knowledge
of its relative intensity (see Chapter 7). Unfortunately the determination
of the intensities of reflected signals is affected by greater uncertainties than
that of their time delays. If the reflection occurs on a plane boundary with
dimensions large compared to acoustical wavelengths, the 1/r law of spher-
ical wave propagation can be applied. Eqns (2.44) or (2.45) represent
criteria to decide whether this condition is met or not by a particular wall
portion, for instance by a balcony face or a suspended reflector. Let r0 and
ri be the path length of the direct sound ray and that of a particular reflec-
tion, measured from the sound source to the listener, then

∆L = 20 log10(r0/ri) dB (9.2)
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is the pressure level of that reflection relative to the direct sound pressure. If
the reflecting boundary has an absorption coefficient α, the level of first-
order reflections is lower by another 10 log (1/α) decibels. Irregularities on
walls and ceiling can be neglected as long as their dimensions are small
compared to the wavelength; this requirement may impose restrictions on
the frequency range for which the results obtained with the formula above
are valid. The strengths or intensities of reflections from a curved wall
section can be estimated by comparing the density of the reflected rays in
the observation point with the ray density which would be obtained if that
wall section were plane. For spherical or cylindrical wall portions the ratio
of the reflected and the incident energy can be calculated from eqn (4.19)
which is equivalent to
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The techniques of ray tracing with pencil and ruler takes into account only
such sound paths which are situated in the plane of the drawing to hand.
Sound paths in different planes can be found by applying the methods of
constructive geometry. This, of course, involves considerably more time
and labour, and it is questionable whether this effort is justified in every
case considering the rather qualitative character of the information gained
by it. For rooms of more complicated geometry it may be more practical
to investigate the reflections experimentally using a room model at a re-
duced scale (see Section 9.5) or by applying computerised ray tracing tech-
niques (see Section 9.6).

So far we have described methods to investigate the effects of a given
enclosure upon sound reflections. Beyond the particular case, there are some
general conclusions which can be drawn from geometrical considerations,
and experiences collected from existing halls or from basic investigations.
They shall be summarised briefly below.

If a room is to be used for speech, the direct sound should be supported
by as many strong reflections as possible with delay times not exceeding
about 50 ms. Reflecting areas (wall portions, screens) placed very close to
the sound source are especially favourable, since they can collect a great
deal of the emitted sound energy and reflect it in the direction of the audi-
ence. For this reason it is wrong to have heavy curtains of fabric behind the
speaker. On the contrary, the speaker should be surrounded by hard and
properly orientated surfaces, which can even be in the form of portable
screens, for instance. Similarly, reflecting surfaces above the speaker have a
favourable effect. If the ceiling over the speaker is too high to produce
strong and early reflections, the installation of suspended and suitably tilted
reflectors should be taken into consideration (see Fig. 9.3). An old and
familiar example of a special sound reflector is the canopy above the pulpits
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in churches. The acoustical advantage of these canopies can be observed
very clearly when it is removed during modern restoration.

Unfortunately these principles can only be applied to a limited extent to
theatres, where such measures could in fact be particularly useful. This is
because the stage is the realm of the stage designer, of the stage manager
and of the actors; in short, of people who sometimes complain bitterly
about the acoustics but who are not ready to sacrifice one iota of their
artistic intentions in favour of acoustical requirements. It is all the more
important to shape the wall and ceiling portions which are close to the
stage in such a way as to direct the incident sound immediately onto the
audience.

In conference rooms, school classrooms, lecture halls, etc., at least the
front and central parts of the ceiling should be made reflecting since, in
most cases, the ceiling is low enough to produce reflections which support
the direct sound. Absorbent materials required for the reduction of the
reverberation time can thus only be mounted on more remote ceiling por-
tions (and on the rear wall).

In the design of concert halls, it is advisable to make only moderate use
of areas projecting the sound energy immediately towards the audience.
This would result in a high fraction of early energy and – in severe cases –
to subjective masking of the sound decay in the hall. The effect would be
dry acoustics even if the objective reverberation time has correct values. As
with lecture halls, etc., the sound sources on the stage should be surrounded
by reflecting areas which collect the sound without directing it towards
special locations and directions.

As we have seen in Section 7.7, it is the fraction of lateral reflections in
the early energy which is responsible for the ‘spatial impression’ or ‘spa-
ciousness’ in a concert hall. For this reason particular attention must be
given to the design of the side walls, especially to their distance and to the
angle which they include with the longitudinal axis of the plan.

This may be illustrated by Fig. 9.4, which shows the spatial distribution
of early lateral energy computed for three differently shaped two-dimen-
sional enclosures,1 the area of which was assumed to be 600 m2. The posi-
tion of the sound source is marked by a cross; the densities of shading of
the various areas correspond to the following intervals of the ‘early lateral
energy fraction’ LEF (see eqn 7.18): 0–0.06, 0.06–0.12, 0.12–0.25, 0.25–
0.5 and >0.5. In all examples the LEF is very low at locations next to the
sound source, but it is highest in the vicinity of the side walls. Accordingly
the largest areas with high LEF and hence with satisfactory ‘spaciousness’
are to be expected in long and narrow rectangular halls. On the other hand,
particular large areas with low ‘early lateral energy fraction’ appear in fan-
shaped halls, a fact which can easily be verified by a simple construction of
the first-order image sources. These findings explain – at least partially –
why so many concert halls with excellent acoustics (for instance Boston
Symphony Hall or Großer Musikvereinssaal in Vienna; see Table 7.3) have
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Figure 9.4 Distribution of early reflected sound energy in two-dimensional
enclosures of 600 m2: (a) rectangular, different source positions; (b) fan shaped.
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Figure 9.5 Origin of lateral or partially lateral reflections (S = sound source).

rectangular floor plans with relatively narrow side walls. It may be noted,
by the way, that the requirement of strong lateral sound reflections favours
quite different room shapes than the requirement of strong direct sound
(see Section 9.1).

In real, i.e. in three-dimensional halls, additional lateral energy is pro-
vided by the double reflection from the edges formed by a side wall and
horizontal surfaces such as the ceiling or the underfaces of galleries or
balconies (Fig. 9.5). These contributions are especially useful since they are
less attenuated by the audience below than reflections from the side walls
alone. If no balconies are planned the beneficial effect of underfaces can be
achieved as well by properly arranged surfaces or bodies protruding from
the side walls.

With regard to the performance of orchestral music one should remem-
ber that various instruments have quite different directivity of sound radi-
ation which depends also on the frequency. Accordingly sounds from certain
instruments or groups of instruments are predominantly reflected by par-
ticular wall or ceiling portions. Since every concert hall is expected to house
orchestras of varying composition and arrangement, only some general con-
clusions can be drawn from this fact, however. Thus the high frequency
components, especially from string instruments, which are responsible for
the brilliance of the sound, are reflected mainly from the ceiling overhead
and in front of the stage, whereas the side walls are very important for the
reflection of components in the range of about 1000 Hz and hence for the
volume and sonority of the orchestral sounds.2

Some further comments may be appropriate on the acoustical design of
the stage of concert halls, which has been a neglected subject for many years
but recently has attracted the attention of several researchers. From the
acoustical point of view, the stage enclosure of a concert hall has the purpose
of collecting sounds produced by the musical instruments, to blend them
and finally to project them towards the auditorium, but also to reflect part
of the sound energy back to the performers. This is necessary to establish
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the mutual auditory contact they need to maintain ensemble, i.e. proper
intonation and synchronism.

At first glance platforms arranged in a recess of the hall seem to serve
these purposes better in that their walls can be designed in such a way as to
direct the sound in the desired way. As a matter of fact, however, several
famous concert halls have more exposed stages which form just one end of
the hall. From this it may be concluded that the height and inclination of
the ceiling over the platform deserves particular attention.

Marshall et al.3 have found by systematic experimental work that the sur-
faces of a stage enclosure should be far enough away from the performers
to delay the reflected sound by more than 15 ms but not more than 35 ms.
This agrees roughly with the observation that the optimum height of the
ceiling (or of overhead reflectors) is somewhere between 5 and 10 m. With
regard to the side walls, this guideline can be followed only for small perform-
ing groups, since a large orchestra will usually occupy the whole platform.
In any case, however, the side walls should be surfaces which reflect well.

Another important aspect of stage design is raking of the platform,4 which
is often achieved with adjustable or movable risers. It has, of course, the
effect of improving the sightlines between listeners and performers. From
the acoustical standpoint it increases the strength of the direct sound and
reduces the obstruction of sound propagation by intervening players. It
seems, however, that this kind of exposure can be carried too far; probably
the optimum rake has to be determined by some experimentation.

The inspection of room geometry can lead to the result that some wall
areas, particularly if they are curved, will give rise to very delayed reflec-
tions with relatively high energy, which will neither support the direct sound
nor be masked by other reflections, but instead these reflections will be
heard as echoes. The simplest way of avoiding such effects is to cover these
wall portions with highly absorbent material. If this precaution would cause
an intolerable drop in reverberation time or is impossible for other reasons,
a reorientation of those surfaces could be suggested or they could be split
up into irregularly shaped surfaces so that the sound is scattered in all
directions. Of course the size of these irregularities must at least be compar-
able with the wavelength in order to be effective. If desired, any treatment
of these walls can be concealed behind acoustically transparent screens,
consisting of grids, nets or perforated panels, whose transmission proper-
ties were discussed in Section 6.3.

9.3 Reverberation time

Among all significant room acoustical parameters and indices the rever-
beration time is the only one which is related to constructional data of the
room and to the absorptivity of its walls by relatively reliable and tractable
formulae. Their application permits us to lay down practical procedures,
provided we have certain ideas on the desired values of the reverberation



Design considerations and procedures 287

times at various frequencies, which in turn requires knowledge of the pur-
poses for which the room is intended.

For an exact prediction of the reverberation time quite a few room data
are needed: the volume of the room, the materials and the surface treatment
of the walls and of the ceiling, the number, the arrangement and the type of
seats. Many of these details are often only finally settled at a later stage.
This is an advantage as it enables the acoustician to exercise his influence to
a considerable extent in the direction he desires. On the other hand, he
must at first be content with a rough assumption about the properties of
the walls. Therefore it is sound reasoning not to carry out a detailed rever-
beration calculation at this first stage but instead to predict or estimate the
reverberation approximately.

An upper limit of the attainable reverberation time can be obtained from
Sabine’s formula (5.24) with m = 0, by attributing an absorption coefficient
of 1 to the areas covered by an audience and an absorption coefficient of
0.05–0.1 to the remaining areas, which need not be known too exactly for
this purpose.

For halls with a full audience and without any additional sound absorb-
ing materials, i.e. in particular for concert halls, a few rules-of-thumb for
estimating the reverberation time are in use. The simplest one is
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with N denoting the number of occupied seats. Another one is based on the
‘effective seating area’ Sa,
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Here Sa includes a strip of 0.5 m around each block of seats; aisles are
added into to Sa if they are narrower than 1 m (see Section 6.7). In order to
give an idea of how reliable these formula are, the mid-frequency reverbera-
tion times (500–1000 Hz) of numerous concert halls are plotted in Fig. 9.6
as a function of the ‘specific volume’ V/N (Fig 9.6a) and of volume per
square metre audience V/Sa (Fig 9.6b). Both are based on data from Ref. 6
of Chapter 6; each point corresponds to one hall. In both cases, the points
show considerable scatter, and the straight lines representing eqns (9.4) and
(9.5) can be considered as upper limits for the reverberation time at best.

Probably more reliable is an estimate which involves two sorts of areas,
namely the audience area Sa as before, and the remaining area Sr:
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Figure 9.6 Reverberation times of occupied concert halls: (a) as a function of the
volume per seat; (b) as a function of the volume per effective audience area (data
from Ref. 6 of Chapter 6). The straight lines represent eqns (9.4) and (9.5).

The absorption coefficients attributed to those areas, namely the absorp-
tion coefficient of various types of seats, both occupied and empty, and the
‘residual absorption coefficient’ αr may be found in Tables 6.4 and 6.5 which
have been collected by Beranek and Hidaka (see Ref. 7 of Chapter 6).

In any case, a more detailed reverberation calculation should definitely
be carried out at a more advanced phase of planning, during which it is still
possible to make changes in the interior finish of the hall without incurring
extra expense. The most critical aspect is the absorption by the audience.
The factors which influence this phenomenon have already been discussed
in Section 6.7. The uncertainties caused by audience absorption are so great
that it is almost meaningless to try to decide whether Sabine’s formula
(5.24) would be sufficient or whether the more accurate Eyring equation
(5.23) should be applied. Therefore the simpler Sabine formula is prefer-
able with the term 4mV taking into account the sound attenuation in air. If
the auditorium under design is a concert hall which is to be equipped with
pseudorandom diffusors their absorption should be accounted for as well.
The same holds for an organ (see Section 6.8).

It is frequently observed that the actual reverberation time of a hall is
found to be lower than predicted. This fact is usually attributed to the
impossibility of taking into account all possible causes of absorption. The
variation will, however, scarcely exceed 0.1 s, provided that there are no
substantial errors in the applied absorption data and in the evaluation of
the reverberation time.

As regards the absorption coefficients of the various materials and wall
linings, use can be made of compilations which have been published by
several authors (see, for instance, Ref. 5). It should be emphasised that the
actual absorption, especially of highly absorptive materials, may vary con-
siderably from one sample to the other and depends strongly on the par-
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Table 9.1 Typical absorption coefficients of various types of wall materials

Material Centre frequency of octave band (Hz)

125 250 500 1000 2000 4000

Hard surfaces (brick walls, 0.02 0.02 0.03 0.03 0.04 0.05
plaster, hard floors, etc.)
Slightly vibrating walls 0.10 0.07 0.05 0.04 0.04 0.05
(suspended ceilings, etc.)
Strongly vibrating surfaces 0.40 0.20 0.12 0.07 0.05 0.05
(wooden panelling over air
space, etc.)
Carpet, 5 mm thick, 0.02 0.03 0.05 0.10 0.30 0.50
on hard floor
Plush curtain, flow resistance 0.15 0.45 0.90 0.92 0.95 0.95
450 Ns/m3, deeply folded
Polyurethane foam, 27 kg/m3, 0.08 0.22 0.55 0.70 0.85 0.75
15 mm thick on solid wall
Acoustic plaster, 10 mm thick, 0.08 0.15 0.30 0.50 0.60 0.70
sprayed on solid wall

ticular way in which they are mounted. Likewise, the coefficients presented
in Table 9.1 are to be considered as average values only. In many cases it
will be necessary to test actual materials and the influence of their mount-
ing by ad hoc measurements of their absorption coefficient which can be
carried out in the impedance tube (see Section 8.6) or, more reliably, in a
reverberation chamber (see Section 8.7). This applies particularly to chairs
whose acoustical properties can vary considerably depending on the material
and the quantity and quality of the fabric used for the upholstery. If possible
the chair should be constructed in such a way that, when it is unoccupied,
its absorption is not substantially lower than when it is occupied. This has
the favourable effect that the reverberation time of the hall does not depend
too strongly on the degree of occupation. With tip-up chairs this can be
achieved by perforating the underside of the plywood or hardboard seats
and backing them with rock wool. Likewise, an absorbent treatment of the
rear of the backrests could be advantageous. In any event the effectiveness
of such treatment should be checked by absorption measurements.

According to Table 9.1, light partitions such as suspended ceilings or wall
linings have their maximum absorption at low frequencies. Therefore, such
constructions can make up for the low absorptivity of an audience and thus
to achieve a more uniform frequency dependence of the reverberation time.

For large and prestigious objects, it is recommended that reverberation
measurements in the hall itself be performed during several stages of the
hall’s construction. This allows the reverberation calculations to be checked
and to be corrected if necessary. Even during later stages in the construc-
tion there is often an opportunity of taking corrective measures if suggested
by the results of these measurements.
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Figure 9.7 Coupled rooms.

In practice it is not uncommon to find that a room actually consists
of several partial rooms which are coupled to each other. Examples of
coupled rooms are theatres with boxes which communicate with the main
room through relatively small apertures only, or the stage (including the
stage house which may by quite voluminous) of a theatre or opera house
which is coupled to the auditorium by the proscenium, or churches with
several naves or chapels. Cremer6 was the first to point out the necessity of
considering coupling effects when calculating the reverberation time of such
a room. This necessity arises if eqn (5.54) is fulfilled, i.e. if the area of the
coupling aperture is substantially smaller than the total wall area of a par-
tial room.

Let us denote the partial room in which the listener finds himself by
number 1 and the other partial room by 2 (see Fig. 9.7). Now we must
distinguish between two different cases, depending on whether Room 1 on
its own has a longer or a shorter reverberation time than Room 2. In the
first case the reverberation of Room 2 will not be noticed in Room 1 as the
coupling area acts merely as an ‘open window’ with respect to Room 1 and
can be taken as having an absorption coefficient 1. Therefore, whenever an
auditorium has deep balcony overhangs, it is advisable to carry out an alter-
native calculation of decay time in this way, i.e. by treating the ‘mouths’ of
the overhangs as completely absorbing wall portions. Likewise, instead of
including the whole stage with all its uncertainties into the calculation, its
opening can be treated as an absorbing area with an absorption coefficient
rising from about 0.4 at 125 Hz to about 0.8 at 4 kHz.

Matters are more complicated if Room 2 has the longer decay time. The
listener can hear this longer reverberation through the coupling aperture,
but will not perceive it as a part of the decay of the room which he is
occupying. How strongly this ‘separate reverberation’ will be perceived
depends on how the room is excited and on the location of the listener. If
the sound source excites Room 1 predominantly, then the longer decay from
Room 2 will only be heard, if at all, with impulsive sound signals (loud
cries, isolated chords of a piece of music, etc.) or if the listener is close to
the coupling aperture. If, on the contrary, the location of the sound source
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Table 9.2 Coupled rooms

Relation between decay times Character of reverberation

T1 > T2 Reverberation of Room 2 is not perceived

T1 < T2 Source in Room 1 Reverberation of Room 2
is not perceived except
for locations next to
the coupling aperture

Both partial rooms Reverberation of Room 2
excited by the is clearly audible
source

is such that it excites both rooms almost equally well, as may be the case
with actors performing on the stage of a theatre, then the longer reverbera-
tion from Room 2 is heard continually or it may even be the only rever-
beration to appear. In any event it is useful to calculate the reverberation
times of both partial rooms separately. Strictly speaking, for this purpose
the eigenvalues δ ′i of Section 5.7 should be known. For practical purposes,
however, it is sufficient to increase the total absorption ∑Siαi for each par-
tial room by the coupling area and to insert the result into Sabine’s rever-
beration formula. Table 9.2 presents an overview of the most extreme
situations to be distinguished.

Coupling phenomena can also occur in enclosures lacking sound field
diffusion, in particular. This is sometimes observed in rooms having simple
geometrical shapes and extremely non-uniform distribution of absorption
on the walls. A rectangular room, for instance, whose ceiling is not too low
and which has smooth and reflecting side walls will, when the room is fully
occupied, often build up a two-dimensional reverberating sound field in the
upper part with a substantially longer decay time than corresponds to the
average absorption coefficient. The sound field consists of horizontal or
nearly horizontal sound paths and is influenced only slightly by the audi-
ence absorption. Similarly, an absorbent or scattering ceiling treatment will
not change this condition noticeably. This effect may also occur with other
ground plans. Whether the listeners will perceive this separate reverbera-
tion at all again depends on the strength of its excitation.

For lecture halls, theatre foyers, etc., this relatively long reverberation is
of course undesirable. In a concert hall, however, it can lead to a badly
needed increase in reverberation time beyond the Sabine or Eyring value,
namely in those cases where the volume per seat is too small to yield a
sufficiently long decay time in diffuse conditions. An example of this is the
Stadthalle in Göttingen, which has an exactly hexagonal ground plan and
in fact has a reverberation time of about 2 s, although calculations had
predicted a value of 1.6–1.7 s only (both for medium frequencies and for
the fully occupied hall). Model experiments carried out afterwards had
demonstrated very clearly that it was a sound field of the described type
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which was responsible for this unexpected, but highly desirable, increase in
reverberation time. This particular lack of diffusion in itself does not cause
specific acoustical deficiencies in that case.

But even if the enclosure of a hall can be assumed to mix and thus to
redistribute the impinging sound by diffuse reflections, the diffusion of the
sound field and hence the validity of the simple reverberation formulae may
be impaired merely by non-uniform distribution of the absorption. Since
this is typical for occupied auditoria, it may be advisable to check the
reliability of reverberation prediction by tentatively applying the more
exact eqn (5.48).

Sometimes the acoustical consultant is faced with the task of designing a
room which is capable of presenting different kinds of performances, such
as speech on one occasion and music on another. This is typical for multi-
purpose halls; the same thing is frequently demanded of broadcasting or
television studios. As far as the reverberation time is concerned, some vari-
ability can be achieved by installing movable or revolving walls or ceiling
elements which produce some acoustical variability by exhibiting reflecting
surfaces in one position (long reverberation time) and absorbent ones in the
other (short reverberation time). The resulting difference in reverberation
time depends on the fraction of area treated in this way and on the differ-
ence in absorption coefficients of those elements. Installations of this type
are usually quite costly and sometimes give rise to considerable mechanical
problems. A relatively simple way of changing the reverberation time in the
abovementioned manner was described by Kath.7 In a broadcasting studio
with a volume of 726 m3 the walls were fitted with strips of glass wool
tissue which can be rolled up and unrolled electrically. Behind the fabric
there is an air space with an average depth of 20 cm, subdivided laterally in
‘boxes’ of 0.5 m × 0.6 m. The reverberation times of the studio for the two
extreme situations (glass wool rolled up and glass wool completely un-
rolled) are shown in Fig. 9.8 as a function of the frequency. It is clearly seen

Figure 9.8 Maximum and minimum reverberation times in a broadcasting studio
with changeable acoustics.
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that the reverberation time at medium frequencies can be changed from 0.6
to 1.25 s and that a considerable degree of variability in reverberation time
has also been achieved at other frequencies. Other methods which make
use of electroacoustical installations will be described in Chapter 10.

9.4 Prediction of noise level

There are many spaces which are not intended for any acoustical presenta-
tions but where some acoustical treatment is nevertheless desirable or
necessary. Although they show wide variations in character and structural
details, they all fall into the category of rooms in which people are present
and in which noise is produced, for instance by noisy machinery or by the
people themselves. Examples of this are staircases, concourses of railway
stations and airports, entrance halls and foyers of concert halls and
theatres, etc. Most important, however, are working spaces such as open-
plan offices, workshops and factories. Here room acoustics has the relat-
ively prosaic task of reducing the noise level.

Traditionally acoustics does not play any important role in the design of
a factory or an open-plan office, to say the least; usually quite different
aspects, as for instance those of efficient organisation, of the economical
use of space or of safety, are predominant. Therefore the term ‘acoustics’
applied to such spaces does not have the meaning it has with respect to a
lecture room or a theatre. Nevertheless, it is obvious that the way in which
the noise produced by any kind of machinery propagates in such a room
and hence the noise level in it depends highly on the acoustical properties
even of such a room, and further that any measures which are to be taken
to reduce the noise exposure of the personnel must take into account the
acoustical conditions of the room.

A first idea of the steady state sound pressure level a sound source with
power output P produces in a room with wall area S and average absorp-
tion coefficient n is obtained from eqn (5.37). Converting it in a logarith-
mic scale with PL denoting the sound power level (see eqn (1.48)) yields
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This relation holds for distances from the sound source which are signi-
ficantly larger than the ‘reverberation distance’ as given by eqn (5.38) or
eqn (5.40), i.e. it describes the sound pressure level of the reverberant field.
For observation points at distances comparable to or smaller than rh the
sound pressure level is, according to the more general eqn (5.41):
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Both equations are valid under the assumption that the sound field in the
room is diffuse.

Numerous measurements in real spaces have shown, however, that the
reverberant sound pressure level decreases more or less with increasing
distance, in contrast to eqn (9.7). Obviously sound fields in such spaces are
not completely diffuse, and the lack of diffusion seems to affect the validity
of eqn (9.7) much more than that of reverberation formulae. This lack of
diffusion may be accounted for in several ways. Often one dimension of a
working space is much larger (very long rooms) or smaller (very flat rooms)
than the remaining ones. Another possible reason is non-uniform distribu-
tion of absorption. In all these cases a different approach is needed to
calculate the sound pressure level.

For enclosures made up of plane walls the method of image sources
could be employed, which has been discussed at some length in Section 4.1.
It must be noted, however, that real working spaces are not empty, and
that there are machines, piles of material, furniture, benches, etc., in them;
in short, numerous obstacles which scatter the sound and may also par-
tially absorb it.

One way to account for the scattering of sound in fitted working spaces
is to replace the sound propagation in the free space by that in an ‘opaque’
medium as explained at the end of Section 5.1. If we restrict the discussion
to the steady state condition, the energy density of the unscattered com-
ponent, i.e. of the direct sound, is

    
w r t

P

cr
r0 24

( , )  exp ( / )= −
π

e  (9.8)

with P as before denoting the power output of the source. Now it is as-
sumed that the mean free path is so small that virtually all sound particles
will hit at least one scatterer before reaching one wall of the enclosure.
Then we need not consider any reflections of the direct sound. On the other
hand, the scattered sound particles will uniformly fill the whole enclosure
due to the equalizing effect of multiple scattering. Since the scattered sound
particles propagate in all directions they constitute a diffuse sound field
with its well-known properties. In particular, its energy density is ws =
4P/cSn with the same source power as in eqn (9.8). The steady state level
can be calculated from eqn (9.7) or (9.7a). In the latter case, however, the
modified ‘reverberation distance’ rh = (A/16π)1/2 has to be replaced with a
modified value rh′ which is smaller than rh. In fact, equating ws and w0 from
eqn (9.8) yields

rh′ = rh exp (−rh′ /e ) (9.9)

Solving this transcendental equation yields rh′/rh = 0.7035 for rh /e = 1, while
this fraction becomes as small as 0.2653 for rh /e = 10, i.e. when a sound
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particle undergoes 10 collisions on average per distance rh). However, there
remains some uncertainty on the scattering cross-sections Qs of machinery
or other pieces of equipment; obviously there is no practical way to calcu-
late them exactly from geometric data. Several authors (see Ref. 8) identify
Qs with one quarter of the scatterer’s surface. This procedure agrees with
the rule given at the end of Section 5.1.

The transient sound propagation in enclosures containing sound scatter-
ing obstacles is much more complicated than the steady state case. It has
been treated successfully by several authors, for instance by M. Hodgson.9

 In a different approach, the scatterers are imagined as being projected
onto the walls, so to speak, i.e. it is assumed that the walls produce diffuse
sound reflections rather than specular ones. Then the problem can be treated
by application of the integral equation (4.24). As already mentioned in
Section 4.5, this equation has a closed solution for the stationary sound
propagation between two parallel planes, i.e. in an infinite flat room. This
is of considerable practical interest since this kind of ‘enclosure’ may serve
as a model for many working spaces in which the ceiling height h is very
small compared with the lateral dimensions (factories, or open-plan bureaus).
Therefore, sound reflections from the ceiling are absolutely predominant
over those from the side walls, and hence the latter can be neglected unless
the source and/or the observation point are located next to them.

 Equation (4.27) represents this solution for both planes having the same,
constant absorption coefficient α or ‘reflection coefficient’ ρ, and for both
the sound source and the observation point being located in the middle
between both planes. Fortunately, the awkward evaluation of eqn (4.27)
can be circumvented by using the following approximation (see Ref. 7 of
Chapter 4):
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The constant b depends on the absorption coefficient of the floor and the
ceiling. Some of its values are listed in Table 9.3. Equation (9.10) may also

Table 9.3 Values of the constant b in eqn (9.10)

α ρ b

0.7 0.3 1.806
0.6 0.4 1.840
0.5 0.5 1.903
0.4 0.6 2.002
0.3 0.7 2.154
0.2 0.8 2.425
0.1 0.9 3.052
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be used if both boundaries have different absorptivities, in this case α is the
average absorption coefficient.

 Figure 9.9b shows how the sound pressure level, calculated with this
formula depends on the distance from an omnidirectional sound source for
various values of the (average) absorption coefficient α = 1 − ρ of the walls.
For comparison, the corresponding curves for specularly reflecting planes,
computed with eqn (4.2) are presented in Fig. 9.9a. The plotted quantity is
ten times the logarithm of the energy density divided by P/4πch2. Both
diagrams show characteristic differences: smooth boundaries direct all the
reflected energy away from the source, this results in a level increase which
remains constant at large distances. In contrast, diffusely reflecting bound-
aries reflect some energy back towards the source, accordingly the level
difference – compared to that of free field propagation (α = 1) – reaches a
maximum at a certain distance and vanishes in large distances from the
source. This behaviour is typical for enclosures containing scattering ob-
jects and was experimentally confirmed by numerous measurements carried
out by Hodgson9,10 in factories as well as in models.

Both aforementioned methods are well suited to predicting noise levels in
working spaces and estimating the reduction which can be achieved by an
absorbing treatment of the ceiling, for instance. Other possible methods are
measurements in a scale model of the space under investigation (Section
9.5) or computer simulation as described in the following sections.

Absorbing treatment of walls or the ceiling has a beneficial effect on the
noise level, not only in working spaces such as factories or large offices but
also in many other rooms where many people gather together, e.g. in theatre
foyers. A noise level reduction of only a few decibels can increase the acous-
tical comfort to an amazing degree. If the sound level is too high due to
insufficient boundary absorption, people will talk more loudly than in a

Figure 9.9 Sound pressure level in an infinite flat room as a function of distance r
divided by the room height h. The absorption coefficient α of the walls is (from
bottom to top): 1, 0.7, 0.5, 0.3, and 0.1. (a) smooth walls; (b) diffusely reflecting
walls.
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quieter environment. This in turn again increases the general noise level and
so it continues until finally people must shout and still do not achieve satis-
factory intelligibility. In contrast, an acoustically damped environment usu-
ally makes people behave in a ‘damped’ manner too – for reasons which are
not primarily acoustical – and it makes them talk no louder than necessary.

There is still another psychologically favourable effect of an acoustically
damped theatre or concert hall foyer: when a visitor leaves the foyer
and enters the hall, he will suddenly find himself in a more reverberating
environment, which gives him the impression of solemnity and raises his
expectations.

The extensive application of absorbing materials in a room, however, is
accompanied by an oppressive atmosphere, an effect which can be observed
quite clearly when entering an anechoic room. Furthermore, since the level
of the background noise is reduced too by the absorbing areas, a conversa-
tion held in a low voice can be understood at relatively great distances and
can be irritating to unintentional listeners. Since this is more or less the
opposite of what should be achieved in an open-plan office, masking by
background noise is sometimes increased in a controlled way by loud-
speakers fed with random white or ‘coloured’ noise, i.e. with a ‘signal’
which has no time or spectral structure. The level of this noise should not
exceed 50 dB(A). Even so it is still contested whether the advantages of
such methods surpass their disadvantages.

9.5 Acoustical scale models

A well tried method which has been used over a long period of time for the
acoustical design of large halls is to build a smaller model of the hall under
consideration which is similar to the original room, at least geometrically,
and to study the propagation of waves in this model. This method has the
advantage that, with little expenditure, a great number of variations can be
tried out: from the choice of various wall materials to major changes in the
shape of the room.

Since several properties of propagation are common to all sorts of waves,
it is not absolutely necessary to use sound waves for the model measure-
ments. This was an important point particularly during earlier times when
acoustical measuring techniques were not yet at the advanced stage they
have reached nowadays. So waves on water surfaces were sometimes ap-
plied in ‘ripple tanks’. The propagation of these waves can be studied visu-
ally with great ease. The use of them, however, is restricted to an examination
of plane sections of the hall. More profitable is the use of light as a substi-
tute for sound. In this case absorbent areas are painted black or covered
with black paper or fabric, whereas reflecting areas are made of polished
sheet metal. Likewise, diffusely reflecting areas can be quite well simulated
by white matt paper. The detection of the energy distribution can be carried
out by photocells or by photography. However, because of the high speed
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of light this method is restricted to the investigation of the steady state
energy distribution. Furthermore, all diffraction phenomena are neglected
since the optical wavelengths are very small compared to the dimensions of
all those objects which would diffract the sound waves in a real hall. In
spite of these limitations, optical models are still considered a useful tool to
get an idea of the steady state distribution of energy in an auditorium.

On the other hand, the techniques of electroacoustical transducers have
reached a sufficiently high state of the art nowadays to permit the use of
acoustical waves for investigating sound propagation in a scale model. For
this purpose a few geometrical and acoustical modelling rules have to be
observed. In the following, all quantities referring to the model are denoted
by a prime. Then the scale factor σ is introduced by
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σ

(9.11)

where l and l ′ are corresponding lengths. For the time intervals in which
waves with velocities c or c′ travel along corresponding distances we obtain
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The ratios between the wavelengths and frequencies are
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According to the last relation, the sound frequencies applied in a scale
model may well reach into the ultrasonic range. Suppose the model is filled
with air (c ′ = c) and the model is scaled down by 1:10 (σ = 10), then the
frequency range from 100 to 5000 Hz in the original room would corres-
pond to 1–50 kHz in its model.

Since the model is intended to be not only a geometrical replica of the
original hall but an acoustical one as well, the wall absorption should be
modelled with care. This means that any surface in the model should have
the same absorption coefficient at frequency f ′ as that of the corresponding
surface in the original at frequency f:

α i′( f ′) = α i( f ) (9.15)
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a condition which is not easy to fulfil. Even more problematic is the
modelling rule for the attenuation of the medium. According to eqn (1.16a),
2/m is the travelling distance along which the sound pressure amplitude
of a plane wave is attenuated by a factor e = 2.718. . . . From this we con-
clude that

m ′( f ′) = σ m( f )  (9.16)

Of course these requirements can be fulfilled only approximately, and the
required degree of approximation depends on the kind of information we
wish to obtain from the model experiment. If only the initial part of the
impulse response or ‘reflectogram’ is to be studied (over, say, the first 100
or 200 ms in the original time scale), it is sufficient to provide for only two
different kinds of surfaces in the model, namely reflecting ones (made of
metal, glass, gypsum, etc.) and absorbing ones (for instance felt or plastic
foam). The air absorption can be neglected in this case or its effect can be
numerically compensated.

Matters are different if much longer reflectograms are to be observed, for
instance to create listening impressions from the auditorium as was first
proposed by Spandöck.11 According to this idea music or speech signals
which have been recorded without any reverberation are replayed in the
model at frequencies elevated by the factor σ given in eqn (9.14). At a point
under investigation within the model, the sound signal is picked up with a
miniaturised artificial head which has the same directionality and transfer
function at the model frequencies as the human head in the normal audio
range. After transforming the re-recorded signals back to the original time
and frequency domain it can be presented directly to a listener who can
judge subjectively the ‘acoustics’ of the hall and the effects of any modifica-
tions to be studied. Nowadays this technique is known as ‘auralisation’.
More will be said about this matter in Section 9.7.

Concerning the instrumentation for measuring the impulse response in
scale models, the omnidirectional impulse excitation of the model is more
difficult the higher the scale factor and hence the frequency range to be
covered. Small spark gaps can be successfully used for this purpose, but in
any case it is advisable to check their directivity and frequency spectrum
beforehand. Furthermore, electrostatic12 or piezoelectric13 transducers have
been developed for this purpose; they have the advantage that they can be
fed with any desired electrical signal and therefore allow the application of
the more sophisticated methods described in Section 8.2. Since it is virtually
impossible to combine in such transducers high efficiency with very small
dimensions, they must have (at least approximate) spherical symmetry. For
piezoelectric transducers this can be achieved with foils of certain high
polymers which are formed in spherical shape and which can be made
piezoelectric by special treatment.
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Likewise, the microphone should be non-directional. Fortunately suffi-
ciently small condensor microphones are commercially available (

  
1
4
- or

  
1
8
-in microphones). Any further processing, including the evaluation of

the various sound field parameters as discussed in Chapters 7 and 8, is
nowadays carried out, as in full scale measurements, by means of a digital
computer.

9.6 Computer simulation

Although physical models of enclosures have proven to be a very useful
tool for the acoustical design of large halls they are being superseded gradu-
ally by a cheaper, faster and more efficient method, namely by digital simu-
lation of sound propagation in enclosures. The introduction of the digital
computer into room acoustics is probably due to M.R. Schroeder14 and his
co-workers. Since then this method has been employed by many authors to
investigate various problems in room acoustics; examples have been pre-
sented in Sections 5.6 and 9.2 of this book. The first authors who applied
digital simulation to concert hall acoustics were Krokstad et al.,15 who evalu-
ated a variety of parameters from impulse responses obtained by digital
ray tracing techniques. Meanwhile digital computer simulation has been
applied not only to all kinds of auditoria but to factories and other working
spaces as well.8

Basically, there are two methods of sound field simulation in use nowa-
days, namely ray tracing and the method of image sources. Both are based on
geometrical acoustics, i.e. they rely on the validity and application of the law
of specular or diffuse reflection. So far no practical way has been found to
include typical wave phenomena such as diffraction into these algorithms.

The principle of digital ray tracing is illustrated in Fig. 9.10. A sound
source at a given position is imagined to release numerous sound particles
in all directions at time t = 0. Each sound particle travels on a straight path
until it hits a wall which we assume to be plane for the sake of simplicity.
The point where this occurs is obtained by first calculating the intersections
of the particle path with all planes in which the walls are contained, and
then selecting the nearest of them in the forward direction. Provided this

Figure 9.10 Principle of digital ray tracing. S = sound sorce, C =  counting sphere,
s = specular reflection and d = diffuse reflection.
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intersection is located within the real wall, it is the point where the particle
will be reflected, either specularly or diffusely. In the first case its new
direction is calculated from the law of geometrical reflection; however, if
diffuse reflection is assumed to occur, the computer generates two random
numbers from which the azimuth angle ϕ and the polar angle ϑ of the new
direction are calculated in such a way that the latter angle is distributed
according to eqn (4.22) (ϑ is the angle between the scattered particle path
and the local wall normal). After its reflection the particle continues on its
way along the new direction towards the next wall, etc. The absorption
coefficient of a wall can be accounted for in two ways: either by reducing
the energy of the particle by a factor of 1 – α after each reflection or by
interpreting α as ‘absorption probability’, i.e. by generating another ran-
dom number which decides whether the particle will proceed or whether it
has been absorbed. In a similar way the effect of air attenuation can be
taken into account. As soon as the energy of the particle has fallen below a
prescribed value or the particle has been absorbed, the path of another
particle will be ‘traced’. This procedure is repeated until all the particles
emitted by the sound source at t = 0 have been followed up.

The results of this procedure are collected by means of ‘counters’, i.e.
of counting areas or counting volumes which must be assigned previously.
Whenever a particle crosses such a counter its energy and arrival time are
stored, if needed also the direction from which it arrived. After the process
has finished, i.e. the last particle has been followed up, the energies of all
particles received in a certain counter within prescribed time intervals are
added; the result is a histogram (see Fig. 9.11), which can be considered as
a short-time averaged energetic impulse response. The selection of these

Figure 9.11 Time histogram of received particle energy (the interval width is
5 ms).
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Figure 9.12 Distribution (a) of the stationary sound pressure level and (b) of the
‘definition’ in a large lecture hall (after Vorländer16).

intervals is not uncritical: if they are chosen to be too long, the histogram
will be only a crude approximation to the true impulse response since sig-
nificant details are lost by averaging; too short intervals, on the other hand,
will afflict the results by strong random fluctuations superimposed on them.
As a practical rule, the interval should be in the range 5–10 ms, since this
figure corresponds roughly to the time resolution achieved by our hearing.

The problem of properly selecting the time intervals in which the arrival
times are classified does not apply if only parameters listed in Table 8.3, for
instance the ‘definition’ D, the ‘centre time’ ts or the lateral energy para-
meters LEF and LG∞

80 are to be determined, since the calculation of these
quantities involves integrations over the whole impulse response or large
parts of it. The same holds for the steady state energy or the ‘strength
factor’ G which are just proportional to the integral over the whole ener-
getic impulse response (see eqn (7.15)). As an example, Fig. 9.12 depicts the
distribution of the stationary sound pressure level and definition obtained
by application of ray tracing techniques to a lecture hall with a volume of
3750 m3 and 775 seats.16

In any case, however, the achieved accuracy of the results depends on the
number of sound particles counted with a particular counter. For this reason
the counting area or volume must be chosen so that it is not too small;
furthermore, the total number of particles which the original sound impulse
is thought to consist of must be sufficiently large. As a practical guideline, a
total of 105–106 sound particles will yield sufficiently precise results if the
dimensions of the counters are of the order of 1 m. With a good personal
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computer the time required for one run is somewhere between minutes and
one hour, depending on the number of counters, the complexity of the
room to be investigated and the efficiency of the algorithm employed.

The most tedious and time consuming part of the whole process is the
collection and input of room data such as the positions and orientations of
the walls and their acoustic properties. If the enclosure contains curved
portions these may be approximated by planes unless their shape is very
simple, for instance spherical or cylindrical. The degree of approximation is
left to the intuition and experience of the operator. It should be noted,
however, that this approximation will cause systematic and sometimes in-
tolerably large errors.17 These are avoided by calculating the path of direc-
tion of the reflected particle directly from the curved wall applying eqn
(4.1) which is relatively easy if the wall section is spherical of cylindrical.

The process described can be modified and refined in many ways. Thus
the sound radiation need not necessarily be omnidirectional, instead the
sound source can be given any desired directionality. Likewise, one can
study the combined effect of more than one sound source, for instance of a
real speaker and several loudspeakers with specified directional character-
istics, amplifications and delays. This permits the designer to determine the
optimal configuration of an electroacoustic installation in a hall. Further-
more, any mixture of purely specular or ideally diffuse wall reflections can
be taken into consideration; the same holds for the directional dependence
of absorption coefficients.

The second basic method exploits the notion of image sources as has
been described at some length in Section 4.1. In principle, this method is
very old but its practical application started only with the advent of the
digital computer by which constructing numerous image sources and col-
lecting their contributions to the sound field has become very easy, at least
in principle.

However, there is the problem of ‘inaudible’ or invalid image sources
already addressed in Section 4.1. It is illustrated in Fig. 9.13 which shows
two plane walls adjacent at an obtuse angle, along with a sound source A,
both its first order images A1 and A2 and the second order images A12 and
A21. The latter one is inaudible since the line connecting it with the receiv-
ing point R does not intersect the plane (2) within the extension of the
actual wall.

Unfortunately, most of all higher-order source images are invalid. As
an example, consider an enclosure made up of six plane walls with a total
area of 3600 m2, the volume of the room being 12 000 m3. According to
eqn (4.8) a sound ray or sound particle would undergo 25.5 reflections
per second on average. To compute only the first 400 ms of the impulse
response, image sources of up to the 10th order (at least!) must be con-
sidered. With this figure and N = 6, eqn (4.2) tells us that about 1.46 × 107 (!)
image sources must be constructed. However, if the considered enclosure
were rectangular it is easy to see that there are only
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N r(i0) = 4i0
2 + 2 (9.17)

different image sources of order ≤ i0 (neglecting their multiplicity), and all
of them are valid. For our example this formula yields Nr(i0) = 402. This
consideration shows that the fraction of valid image sources is very small in
general. And the set of valid image sources differs from one receiving point
to another.

Fortunately, Vian and van Maercke18 and independently Vorländer19 have
found a way to facilitate the validity checks. This is done by performing an
abbreviated ray tracing process which precedes the actual simulation. Each
sound path detected in this way is associated with a particular sequence of
valid image sources, for instance A → A1 → A12 → R in Fig. 9.13, which is
identified by backtracing the path of the sound particle. The next particle
which hits the counting volume at the same time can be omitted since it
would yield no new image sources. After running the ray tracing for a
certain period one can be sure that all significant image sources – up to a
certain maximum order – have been found, including their relative strengths
which depend on the absorption coefficients of the walls involved in the
mirroring process.

Now the energy impulse response can be formed by adding the contribu-
tions of all image sources as was done in deriving eqn (4.3). Suppose the
original sound source produces a short power impulse at time t = 0 repres-
ented by a Dirac function δ (t), then the contribution of a particular image
source of order i to the energetic impulse response is
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Figure 9.13 Valid and invalid image sources. Image source A21 is invalid, i.e.
‘invisible’ from the given receiver position R.
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Figure 9.14 Impulse response of a room computed from image sources.

m1, m2 , . . . mi are the numbers of the walls involved in the particular sound
path, ρk = 1 − αk are their reflection coefficients, and 

    
rm m mi1 2  . . . denotes the

distance of the considered image from the assumed receiving point.
Figure 9.14 depicts an impulse response obtained in this way. For frequency-
dependent absorptivities this computation must be repeated for a sufficient
number of frequency bands.

But the image model permits the determination not only of the energetic
impulse response of an enclosure, but that of the sound-pressure related
impulse response as well. Suppose the original sound source would produce
at free propagation a short pressure impulse Aδ (t − r0/c) at distance r0, then
the image source considered above contributes the component
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to the pressure impulse response. In this equation the function     r tmk
( ) is the

‘reflection response’ of the kth wall as already introduced in Section 4.1, i.e.
the Fourier transform of its complex reflection factor     R fmk

( ). Each asterisk
symbolizes one convolution operation. (As described in Chapter 8, it may
turn out easier to compute the Fourier transform of eqn (9.18), namely
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and to calculate     ( )  . . . gp m m mi1 2
as the inverse Fourier transform of     ( )  . . . Gp m m mi1 2

.)
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 Hence the image model is in a certain way more ‘powerful’ than ray
tracing. On the other hand it cannot be applied to model the effect of
curved or diffusely reflecting surfaces.

Several successful attempts20,21 have been made to develop hybrid pro-
cedures in order to combine the advantages of ray tracing and the image
model. Typically, the latter is used to build up the early part of the impulse
response, whereas the later parts of the response are computed by ray
tracing in one of its various versions.

9.7 Auralisation

The term auralisation was coined to signify all techniques which intend to
create audible impressions from enclosures not existing in reality but in the
form of design data only. Its principle is outlined in Fig. 9.15. Music or
speech signal originally recorded in an anechoic environment is fed to a
transmission system which modifies the input signal in the same way as its
real propagation in the considered room would do. This system is either a
physical scale model of the room (see Section 9.5), equipped with a suitable
sound source and receiver, or it is a digital filter which has the same im-
pulse response as the room under investigation. The impulse response may
have been measured beforehand in a real room or in its scale model, or it
has been obtained by simulation as described in the preceding section. In
any case, the room simulator must produce a binaural output signal, other-
wise no realistic, i.e. spatial, impressions can be conveyed to the listener.
The output signal is presented to the listener by headphones or, preferably,
by two loudspeakers in an anechoic room fed via a cross-talk cancellation
system as described in the beginning of Chapter 7.

The first experiments of auralisation with scale models were started by
Spandöck’s group in Karlsruhe/Germany in the early 1950s; a comprehens-
ive report may be found in Ref. 22. Auralisation based on a purely digital
room model was first carried out by Allen and Berkley.23

Since auralisation requires a frequency range of at least eight octaves the
transducers used in a scale model have to meet very high standards. For the
same reason the requirements concerning the acoustical similarity between
an original room and its model are very stringent if realistic auditive im-
pressions are expected. The absorption of the various walls materials and
of the audience must be modelled quite correctly, including their frequency

Figure 9.15 Principle of auralisation. The input signal is ‘dry’ speech or music.
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dependence, a condition which must be carefully checked by separate meas-
urements. Even more difficult to model is the attenuation by the medium
according to eqn (9.16). Several groups22,24 have tried to meet this require-
ment by filling the model either with air of very low humidity or with
nitrogen. If at all, by such measures the frequency dependence of air attenu-
ation can be modelled only approximately, and only for a limited frequency
range and a particular scale factor σ.

These problems do not exist for digital room models since both the acous-
tical data of the medium and the enclosure’s geometrical data are fed into
the computer from its keyboard or from a database. Furthermore, the
binaural impulse responses can be made to include the listener’s individual
head transfer functions (see Section 1.6) or at least an average which is
representative of many individuals. Generally, digital models are much more
flexible because the shape and the acoustical properties of the room under
investigation can be changed quite easily. Therefore it is expected that nearly
all future auralisation experiments will be based on computer models. On
the other hand, auralisation is the most fascinating application of room
acoustical simulation.

Pressure-related impulse responses computed with the image source model
according to eqn (9.19) or eqn (9.19a) can be immediately used for
auralisation, provided they are rendered binaural. This is achieved by pro-
perly amending eqn (9.18). Let L(f, ϕ, ϑ) and R(f, ϕ, ϑ) denote the head
transfer functions for the left and the right ear, respectively, and the angles
ϑ and ϑ signify the direction of incidence in a head-related coordinate
system. Their inverse Fourier transforms are l(t, ϕ, ϑ) and r(t, ϕ, ϑ). Then
the modified contributions to the binaural impulse response are

    ( )   ( )  * ( , , ) . . .  . . . g g l tm m m m m mi ipl p1 2 1 2
= ϕ ϑ  (9.19a)

and

    ( )   ( )  * ( , , ) . . .  . . . g g r tm m m m m mi ipr p1 2 1 2
= ϕ ϑ  (9.19b)

In most cases, however, results obtained from room simulation are in the
form of a set of energy impulse responses, namely one for each frequency
band (octave band, for instance). This holds especially for ray tracing res-
ults. Let us denote these results by E(fi, tk); fi is the mid-frequency of the ith
frequency band, while tk denotes the kth time interval. Considered as a
function of frequency, E(fi, tk) approximates a short-time power spectrum
valid for the time interval around tk. By properly smoothing, this spectrum
will become a steady function of frequency, Ek(f ). To convert it into a
pressure-related transmission function Gk(f ) the square root of Ek(f ) is
taken and a suitable phase spectrum ψk(f ) must be ‘invented’. Then

Gk(f ) = √[Ek(f )] exp [iψk(f )]  (9.20)
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According to R. Heinz20 the phase spectrum is not critical at all since all
phases are anyway randomised by propagation in a room. Therefore any
odd random phase function ψk(f ) = −ψk(− f ) could be used for this purpose,
provided it corrsponds to a system with causal behaviour, i.e. to a system
the impulse response of which vanishes for t < 0. A particular possibility is
to derive ψk(f ) from Ek(f ) as the minimum phase function. This is achieved
by applying the Hilbert transform, eqn (8.19), to Ek(f ):
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The Fourier transforms of the spectra Gk(f ) computed in this way are
‘short-time impulse responses’ which are subsequently combined into the
impulse response of the auralisation filter in Fig. 9.15. In order to permit
direct comparisons of several impulse responses (i.e. rooms) it may be prac-
tical to realise the auralisation filter in form of a real-time convolver.

If all steps – including the simulation process – are carefully carried out,
the listener to whom the ultimate result is being presented will experience
an excellent and quite realistic impression. To what extent this impression
is identical with that which the listener would have if he were present in
the actual room is a question which is still to be investigated. In fact, there
are many details which are open to improvement and further development.
In any case, however, an old dream of the acoustician is going to come true
through the techniques of auralisation. Many new insights into room acous-
tics are expected from its application. Furthermore, it permits an acoustical
consultant to convince the architect, the user of a hall (and himself as well)
on the effectivity of the measures he proposes to reach the original design
goal.
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10 Electroacoustic installations
in rooms

Nowadays there are many points of contact between room acoustics and
electroacoustics even if we neglect the fact that modern measuring tech-
niques in room acoustics could not exist without the aid of electroacoustics
(loudspeakers, microphones, recorders). Thus we shall hardly ever find a
meeting room of medium or large size which is not provided with a public
address system for speech amplification; it matters not whether such a room
is a church, a council chamber or a multi-purpose hall. We could dispute
whether such an acoustical ‘prothesis’ is really necessary for all these cases
or whether sometimes they are more a misuse of technical aids; it is a fact
that many speakers and singers are not only unable but also unwilling to
exert themselves to such an extent and to articulate so distinctly that they
can make themselves clearly heard even in a hall of moderate size. Instead
they prefer to rely on the microphone which is readily offered to them. But
the listeners are also demanding, to an increasing extent, a loudness which
will make listening as effortless as it is in broadcasting, television or cin-
emas. Acousticians have to come to terms with this trend and they are well
advised to try to make the best of it and to contribute to an optimum
design of such installations.

But electroacoustic systems in rooms are by far more than a necessary
evil. They open acoustical design possibilities which would be inconceiv-
able with traditional means of room acoustical treatment. For one thing,
there is a trend to build halls and performance spaces of increasing size,
thus giving large audiences the opportunity to witness personally important
cultural, entertainment or sports events. This would not be possible with-
out electroacoustic sound reinforcement since the human voice or a musical
instrument alone would be unable to produce an adequate loudness at most
listeners’ ears. Furthermore, large halls are often used – largely for economic
reasons – for very different kinds of presentations.

 In this situation it is a great advantage that electroacoustic systems per-
mit the adaptation of the acoustical conditions in a hall to different kinds
of presentations, at least to some extent. A sound reinforcement system
which is optimally designed for speech transmission in a particular hall
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can provide for satisfactory speech intelligibility even if the reverberation
time of the room is considerably longer than the optimum for speech. This
fact can be used to adapt the ‘natural’ acoustics of the hall for musical
performances.

The reverse way is even more versatile, but also more difficult technic-
ally: to render the natural reverberation of the hall relatively short in order
to match the needs of optimum speech transmission. For the performance
of music, the reverberation is enhanced by electroacoustical means to a
suitable and adjustable value. The particular circumstances will decide which
of the two possibilities is more favourable.

Electroacoustic systems for reverberation enhancement can be used to
simulate acoustical conditions which we are used to from halls with purely
‘natural’ sound. At the same time, they can be considered as a first step
towards producing new artificial effects which are not encountered in halls
without any electroacoustical system. In the latter respect we are just at the
beginning of a development whose progress cannot yet be predicted.

Whatever is the type and purpose of an electroacoustic system, there is a
close interaction between the system and the room in which it is operated
in that its performance to a high degree depends on the acoustical proper-
ties of the enclosure itself. Therefore, the installation and use of such a
system does not dispense with careful acoustical planning. Furthermore,
without the knowledge of the acoustical factors responsible for speech in-
telligibility and of the way in which these factors are influenced by sound
reflections, reverberation and other acoustical effects, it would hardly be
possible to plan, to install and to operate electroacoustical sytems with
optimal performance.

10.1 Loudspeaker directivity

In the simplest case, a sound reinforcement system consists of a micro-
phone, an amplifier and one or several loudpeakers. If the sounds of mu-
sical ensembles are to be reinforced several microphones may be used, the
output signals of which are electrically mixed.

The most critical component in this chain is the loudspeaker because it
must handle high power without causing linear and non-linear distortions,
and should at the same time radiate with a suitable directivity.

As a model of a loudspeaker we consider first a plane circular piston
mounted flush in an infinite rigid baffle as shown in Fig. 10.1. Each of its
area elements contributes to the sound pressure at some point. At higher
frequencies when the radius a of the piston is not small compared with the
wavelength of the radiated sound signal there may be noticeable phase
differences between these contributions, leading to partial or total cancella-
tion depending on the sound wave directions at the receiving point (not
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Figure 10.1 Piston radiator, schematic.

Figure 10.2 Directivity function of the circular piston: (a) ka = 2; (b) ka = 5;
(c) ka = 10.

shown in the figure). As a result the sound pressure at a given distance
depends in a typical way on the angle of radiation:

    
Γ( )  

( sin )

sin
ϑ ϑ

ϑ
=

2 1J ka

ka
 (10.1)

Here Γ(ϑ) is the directivity function of the piston as already defined in
Section 1.2, J1 is the first-order Bessel function, and ka is the so-called
Helmholtz number, in this case it is just the circumference of the piston
divided by the acoustical wavelength. Figure 10.2 depicts a few directional
patterns of the circular piston, i.e. polar representations of the directivity
function | r | for various numbers ka = 2πa/λ. (The three-dimensional dir-
ectivity functions are obtained by rotating these diagrams around their
horizontal axis.) For ka = 2 the radiation is nearly uniform, but with in-
creasing ka the lobe becomes more and more narrow. For ka > 3.83, addi-
tional lobes appear in the diagrams.
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The ‘narrowness’ of the main lobe of a radiator’s directional diagram can
be characterised by its half-width, i.e. the angular distance 2∆ϑ of the
points for which | Γ |2 = 0.5 as shown in Fig. 10.5. For the circular piston
with ka >> 1 this figure is approximately

    
2 30∆ϑ λ

  ≈ °
a

(10.2)

Another important ‘figure of merit’ is the gain or directivity factor γ defined
as the ratio of the maximum and the average intensity, both at the same
distance from the source (see eqn (5.39)). For the circular piston it is given
by
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This function is plotted in Fig. 10.3 as a function of ka.
Real loudspeakers do not have a plane and rigid piston, and in most

cases they are not mounted in a plane baffle but in a box. Hence their
directivity differs from that described by eqns (10.1) to (10.3). Never-
theless, these relations yield at least a guideline for the directivity of real
loudspeakers.

Another type of loudspeaker which is commonly used in public address
systems is the horn loudspeaker. It consists of a tube with steadily in-
creasing cross-sectional area, called a horn, and of an electrodynamically
driven membrane at the narrow end (the throat) of the horn (see Fig. 10.4).
Its main advantage is its high efficiency because the horn improves the
acoustical match between the membrane and the free field. Furthermore,
by combining several horns a wide variety of directional characteristics can

Figure 10.3 Directional factor γ (in dB) of the circular piston as a function of ka.
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be obtained. For these reasons, horn loudspeakers are often employed for
large-scale sound reproduction. Common horn shapes are based on an
exponential growth of the cross-sectional area. Such horns have a marked
cut-off frequency which depends on their flare and below which they can-
not efficiently radiate sound.

The directional characteristics of a horn loudspeaker depends on the
shape and the opening area of the horn and, of course, on the frequency.
As long as the acoustical wavelength is larger than all lateral dimensions of
the opening, i.e. at relatively low frequencies, its directivity pattern is sim-
ilar to that of a plane piston with the same shape (see eqn (10.1)). At higher
frequencies, the directional characteristics of horn loudspeakers are broader
than those of the corresponding piston. Since they do not depend only on
the size and shape of the opening but also on the shape of the whole horn,
they cannot be expressed in simple terms, instead the reader is referred, for
instance, to Olson’s book.1

As mentioned, the directivity pattern can be shaped in a desired way by
combining several or many horn loudspeakers. The most straightforward
solution of this kind is the multi-cellular horn consisting of many single

Figure 10.4 Horn loudspeaker (multi-cellular horn).
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Figure 10.5 Directivity function | Γ(θ) |  of a linear loudspeaker array with N = 8
elements for kd = π /2.

horns the openings of which approximate a portion of a sphere and yield
nearly uniform radiation into the solid angle subtended by this portion.

If an electroacoustic sound source consists of several closely arranged
loudspeakers with each of them generating the same acoustical signal their
contributions may interfere with each other. As a consequence, the entire
sound source has a directivity which may greatly differ from that of the
single loudspeaker.

As a simple example we consider first a linear array of N point sources
which are arranged along a straight line with equal spacing d. The sources
are assumed to emit equal acoustical signals. The directivity function of this
array reads
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where ϑ is the angle which the considered direction includes with the
normal of the array. This is illustrated in Fig. 10.5 which plots | Γ(ϑ) | as a
polar diagram for kd = π/2 and N = 8. The three-dimensional directivity
can be imagined by rotating this diagram around the (vertical) axis of the
array. As in the case of the circular piston, the directivity function contains
a main lobe which becomes narrower with increasing frequency. Further-
more, for f > c/Nd it shows smaller satellite lobes, the number of which
grows with increasing number of elements and with the frequency. For
N > 3, the largest of these side lobes is at least 10 dB lower than the max-
imum of the main lobe. The angular half-width of the main lobe is

    
2 50∆ϑ λ

  ≈ °
Nd

(10.5)

This relation, however, holds only if the resulting 2∆ϑ is less than 30°.
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If the point sources in this array are replaced with similar loudspeakers
fed with identical electrical signals, the total directivity function is simply
obtained by multiplying the directivity function of the array Γa with that of
its elements Γ.

Linear loudspeaker arrays are widely used in sound reinforcement sys-
tems. In order to achieve uniform sound supply to an audience they must
be mounted with their axes in a vertical direction, of course.

10.2 Design of electroacoustic systems for speech transmission

This section deals with some factors influencing the performance of systems
for speech reinforcement, namely with the acoustical power to be supplied
by the loudspeakers, with their directionality and with the reverberation
time of the room where the system is operated.

If speech intelligibility were a function merely of the loudness, i.e. of the
average energy density wr at a listener’s position, we could use eqn (5.37)
for estimating the necessary acoustical power of the loudspeaker:
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with
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denoting the total absorbing area in the room.
We know, however, from the discussions in Chapter 7, that the intelli-

gibility of speech depends not only on its loudness but even more on the
structure of the impulse response characterising the sound transmission
from a sound source to a listener. In particular, the classification of the
total energy conveyed by the impulse response into useful and detrimental
energy is of great importance.

To derive practical conclusions from this latter fact, we idealise the im-
pulse responses of individual transmission paths by an exponential decay of
sound energy with a decay constant δ = 6.91/T:

E(t) = E0 exp (−2δt)

Now suppose there is a sound source supplying an average power P to the
room under consideration. We regard as detrimental those contributions to
the resulting energy which are conveyed by the ‘tail’ of the energetic im-
pulse response and which are due to reflections being delayed by more than
100 ms with respect to the direct sound. The corresponding modification of
eqn (5.34) (second version) reads
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and leads to the detrimental part of the reverberant energy density
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On the other hand, the direct sound energy supplied by the loudspeaker is
regarded as useful energy, taking into account, however, the directivity of
the loudspeaker and eventually including the contributions made by reflect-
ing surfaces close to the loudspeaker. We assume that the loudspeaker or
the loudspeaker array has a gain γ and points with its main lobe towards
the most remote parts of the audience which are at a distance rmax from it.
Then the density of the useful energy in that most critical region is, accord-
ing to eqn (5.39):
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On the assumption that the level Ld of the speech signal, undistorted by
decaying sound energy, is about 70–80 dB, satisfactory intelligibility is
achieved if

wd ≈ wr′

or, after insertion of eqns (10.7) and (10.8):
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By introducing the reverberation time T = 3 ln10/δ and solving for rmax, we
obtain an expression for the range which can be supplied with amplified
speech at good intelligibility
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(rmax in metres, V in cubic metres).
This critical distance is plotted in Fig. 10.6 as a function of the reverbera-

tion time; the product γV of the loudspeaker gain and the room volume is
the parameter of the curves.
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Figure 10.6 Allowed maximum distance of listeners from loudspeaker as a
function of the reverberation time for various values of γV(V in m3).

It should be noted that eqn (10.9) indicates the order of magnitude of the
allowed rmax than an exact limit. Furthermore, its predictions are somewhat
too pessimistic in that its derivation neglects the fact that the main lobe is
usually directed towards the audience area, which is highly absorbing at
mid and high frequencies. This reduces the power available for the excita-
tion of the reverberant field roughly by a factor
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with αa and αr denoting the absorption coefficient of the audience and the
residual absorption coefficient, respectively (see Section 6.7). Consequently,
the gain γ in eqn (10.9) and Fig. 10.6 can be replaced with γγ ′ ≥ γ. In any
case, however, the reach of the loudspeaker is limited by the reverberant
sound field and cannot be extended just by increasing the loudspeaker power.

As an example let us consider a hall with a volume of 15 000 m3 and a
reverberation time of 2 s. If the product γγ ′ can be made as high as 16, the
maximum distance to a listener will be rmax ≅ 28 m.

So it seems that the condition of eqn (10.9) is not too difficult to fulfil.
This is indeed the case for medium and high frequencies. At low frequen-
cies, however, γ as well as γ ′ are close to unity. As a consequence, most of
the low frequency energy supplied by the loudspeaker will feed the rever-
berant part of the energy density where it is not of any use. This is the
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reason why so many halls equipped with a sound reinforcement system suf-
fer from a low frequency background which is unrelated to the transmitted
signal. The only remedy against this evil is to suppress the low frequency
components of the signal by a suitable electrical filter since in any case they
do not contribute to speech intelligibility.

The acoustical power to be emitted by the loudspeaker is determined by
the requirement that the directly transmitted sound portion leads to a suffi-
ciently high sound pressure pd or pressure level Ld even at the most remote
seats:
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This is the same formula as that to be applied to outdoor sound amplifica-
tion since it does not include any room properties. This equation suggests
that the power which the loudspeaker supplies should be made particularly
high at low frequencies where the gain γ is relatively small. However, for
the reason discussed above just the opposite is true.

In a large hall there is usually a certain noise level, which is due to a
restless audience, to the air-conditioning system or to insufficient insulation
against exterior noise sources. If this level is 40 dB or less it can be left out
of consideration as far as the required loudspeaker power is concerned.
This is not so at higher noise levels, of course. To be prepared for all
eventualities it is advisable to increase the acoustical power given by eqn
(10.10) by a substantial safety factor. In any case, it should be clear that
good speech intelligibility is not achieved just with sheer power.

10.3 A few remarks on the selection of loudspeaker positions

The amplified microphone signal can be supplied to the room either by one
central loudspeaker, or by several or many loudspeakers distributed through-
out the room. (The term ‘central loudspeaker’ includes of course the pos-
sibility of combining several loudspeakers closely together in order to achieve
a suitable directivity, for instance in a linear array.) This section will deal
with several factors which should be considered when a suitable loudspeaker
location is to be selected in a room.

In each case the loudspeakers should ensure that all the listeners receive
a uniform supply of sound energy; furthermore, for speech installations,
a satisfactory speech intelligibility is required. We have already seen in
the preceding section that this is not only a matter of applied acoustical
power but also a question of a suitable loudspeaker arrangement and
directionality.

In addition a sound reinforcement system should, in most cases, yield a
natural sound impression. In the ideal case (possibly with the exception of
the presentation of electronic music) the listener would be unable to notice
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Figure 10.7 Central loudspeaker system (schematic representation).
L = loudspeaker, M = microphone, A = amplifier, x = source.

the electroacoustical aids at all. To achieve this, it would at least be neces-
sary, apart from using high quality microphones, loudspeakers and ampli-
fiers, for the sound radiated by the loudspeakers to reach, or appear to
reach, the listener from the same direction from which he sees the actual
speaker or natural sound source.

In most cases, the sound signal emitted by the loudspeaker is picked up
by a microphone close to the natural sound source. If the loudspeakers as
well as the microphone are in the same hall, the microphone will inevitably
pick up sound arriving from the loudspeaker as well. This phenomenon,
known as ‘acoustical feedback’, can result in instability of the whole equip-
ment and can lead to howling or whistling sounds. However, even with
stable operation, the quality of the amplified sound signals may be reduced
substantially by acoustical feedback. A suitably selected loudspeaker loca-
tion can minimise this effect. We shall discuss acoustical feedback in a more
detailed manner in the next section.

With a central loudspeaker installation, the irradiation of the room is
achieved by a single loudspeaker or loudspeaker combination with the de-
sired directionality, and if necessary there is additional support from sub-
sidiary loudspeakers in the more remote parts of the room (boxes, balcon-
ies, spaces behind corners, etc.). A simple central installation is depicted
schematically in Fig. 10.7. The location of the loudspeaker, its directionality
and its orientation have to be chosen in such a way that the audience is
supplied with direct sound as uniformly as possible. This can be checked
experimentally, not by stationary measurements, but by impulse measure-
ments or using correlation techniques. In most cases, the loudspeaker will
be mounted above the natural sound source; its actual position must be so
chosen that feedback becomes as little as possible. This way of mounting
has the advantage that the direct sound, coming from the loudspeaker, will
always arrive from roughly the same direction (with regard to a horizontal
plane) as the sound arriving directly from the sound source. The vertical
deviation of directions is not very critical, since our ability to discriminate
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sound directions is not as sensitive in a vertical plane as in a horizontal one.
The subjective impression is even more natural if care is taken that the
loudspeaker sound reaches the listener simultaneously with the natural sound
or a bit later. In the latter case the listener benefits from the law of the first
wave front which raises the illusion that all the sound he hears is produced
by the natural sound source, i.e. that no electroacoustic system is in opera-
tion. This illusion can be maintained even if the level of the loudspeaker
signal at the listener’s position surpasses that produced by the natural source
by 5–10 dB, provided the latter precedes the loudspeaker signal by about
10–15 ms (Haas effect, see Section 7.3).

The simultaneous or delayed arrival of the loudspeaker’s signals at the
listener’s seat can be achieved by increasing the distance between the loud-
speaker and the audience. The application of this simple measure is limited,
however, by the increasing risk of acoustical feedback, since the micro-
phone will lie more and more in the range of the main lobe of the loud-
speaker’s directional characteristics. Thus, a compromise must be found.
Another way is to employ electrical methods for effecting the desired time
delay. They are described below.

Very good results in sound amplification, even in large halls, have been
obtained by using a speaker’s desk which has loudspeakers built into the
front facing panel; these loudspeakers were arranged in properly inclined,
vertical columns with suitable directionality. With this arrangement, the
sound from the loudspeakers will take almost the same direction as the
sound from the speaker himself. It reduces problems due to feedback pro-
vided that the propagation of structure-born sound is prevented by resili-
ently mounting the loudspeakers and the microphone.

In very large or long halls, or in halls consisting of several sections, the
supply of sound energy by one single loudspeaker only will usually not be
possible, for one thing because condition (10.9) cannot be met without
unreasonable expenditure. The use of several loudspeakers at different posi-
tions has the consequence that each loudspeaker must only reach a smaller
maximum distance rmax which makes it easier to satisfy eqn (10.9). Simple
examples are shown in Fig. 10.8. If all loudspeakers are fed with identical
electrical signals, however, confusion areas will be created in which lis-
teners are irritated by hearing sound from more than one source. In these
areas it is not only the natural localisation of the sound source which is
impaired but the intelligibility will also be significantly diminished. This
undesirable effect is avoided by electrically delaying the signals applied to
the auxiliary loudspeakers. The delay time should at least compensate the
distances between the auxiliary loudspeaker(s) and the main loudspeaker.
Furthermore, the power of the subsidiary loudspeakers must not be too
high since this again would make the listener aware of it and hence destroy
his illusion that all the sound he receives is arriving from the stage.

The delay times needed in sound reinforcement systems are typically in
the range 10–100 ms, sometimes even more. In the past, tape recorders
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Figure 10.8 Public address systems with more than one loudspeaker unit.
L, L′ = loudspeakers, M = microphone, A = amplifier.

with endless magnetic tapes or wheels with a magnetic track on their
periphery have been used for this purpose. They were equipped with one
recording head and several playback heads at distances proportional to the
desired delay times. Nowadays these electromechanical devices have been
superseded by digital delay units.

In halls where a high noise level is to be expected, but where nevertheless
announcements or other information must be clearly understood by those
present, the ideal of a natural-sounding sound transmission, which pre-
serves or simulates the original direction of sound propagation, must be
sacrificed. Accordingly, the amplified signals are reproduced by many loud-
speakers which are distributed fairly uniformly and are fed by identical
electrical signals. In this case it is important to ensure that all the loud-
speakers which can be mounted on the ceiling or suspended from it are
supplied with equally phased signals. The listeners are then, so to speak, in
the near field of a vibrating piston. Sound signals of opposite phases would
be noticed in the region of superposition in a very peculiar and unpleasant
manner.

If the sound irradiation is effected by directional loudspeakers from the
stage towards the back of the room, the main lobe of one loudspeaker
will inevitably project sound towards the rear wall of the room, as we
particularly wish to reach those listeners who are seated the furthest away
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immediately in front of the rear wall. Thus, a substantial fraction of the
sound energy is reflected from the rear wall and can cause echoes in other
parts of the room, which can irritate or disturb listeners as well as speakers.
For this reason it is recommended that the remote portions of wall being
irradiated by the loudspeakers are rendered highly absorbent. In principle,
an echo could also be avoided by a diffusely reflecting wall treatment which
scatters the sound in all possible directions. But then the scattered sound
would excite the reverberation of the room, which, as was explained earl-
ier, is not favoured for speech intelligibility.

The preceding discussions refer mainly to the transmission of speech. The
electroacoustical amplification of music – apart from entertainment or dance
music – is firmly rejected by many musicians and music lovers for reasons
which are partly irrational. Furthermore, many of them have the suspicion
that the music could be manipulated in a way which is outside the artists’
influence. And finally, almost everybody has experienced the poor perform-
ance of technically imperfect reinforcement systems. If, in spite of objec-
tions, electroacoustical amplification is mandatory in a performance hall,
the installation must be carefully designed and constructed with first class
components and it must preserve, under all circumstances, the natural dir-
ection of sound incidence. Care must be taken to avoid linear as well as
non-linear distortions and the amplification should be kept at a moderate
level only. A particular problem is to comply with the large dynamical
range of symphonic music. For entertainment music, the requirements are
not as stringent; in this case people have long been accustomed to the fact
that a singer has a microphone in his or her hand and the audience will
more readily accept that it will be conscious of the sound amplification.

These remarks have no significance whatsoever for the presentation of
electronic music; here the acoustician can safely leave the arrangement of
loudspeakers and the operation of the whole equipment to the performers.

10.4 Acoustical feedback and its suppression

Acoustical feedback of sound reinforcement systems in rooms has already
been mentioned in the last section. In principle, feedback will occur when-
ever the loudspeaker is in the same room as the microphone which inevit-
ably will pick up a portion of the loudspeaker signal. Only if this portion is
sufficiently small are the effects of feedback negligibly faint; in other cases,
it may cause substantial linear distortions, ringing effects and finally self-
sustained oscillations of the whole system which are heard as howling or
whistling.

Before discussing measures for the reduction or suppression of feedback
effects, we shall deal with its mechanism in a somewhat more detailed
manner.

We assume that the original sound source, for instance a speaker, will
produce at the microphone a sound signal whose spectrum is denoted by
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S(ω) (see Fig. 10.9). Its output voltage is amplified with a frequency inde-
pendent amplifier gain q and is fed to the loudspeaker. The loudspeaker
signal will reach the listener by passing along a transmission path in the
room with a complex transfer function I(ω); at the same time, it will reach
the microphone by a path with the transmission function G(ω). The latter
path, together with the microphone, the amplifier and the loudspeaker,
constitutes a closed loop through which the signal passes repeatedly.

The lower part of Fig. 10.9 shows the mechanism of acoustical feedback
in a more schematic form. The complex amplitude spectrum of the output
signal (i.e. of the signal at the listener’s seat) is given by
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From this expression we calculate the transfer function of the whole system
including the effects of acoustical feedback, G′(ω) = S ′(ω)/S(ω):
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The latter expression clearly shows that acoustical feedback is brought
about by the signal repeatedly passing through the same loop. The factor
qG(ω), which is characteristic for the amount of feedback, is called the
‘open loop gain’ of the system. Depending on its magnitude, the spectrum
S′(ω) of the received signal and hence the signal itself may be quite different
from the original signal with the spectrum S(ω).

Figure 10.9 Acoustical feedback in a room. In the lower part the transmission
paths in a room and the loudspeakers are represented by ‘black boxes’.
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Figure 10.10 Nyquist diagram illustrating stability of acoustical feedback.

A general idea of the properties of the ‘effective transfer function’ G′ can
easily be given by means of the Nyquist diagram in which the locus of the
complex open loop gain is represented in the complex plane (see Fig. 10.10).
Each point of this curve corresponds to a particular frequency, abscissa and
ordinate are the real part and the imaginary part of qG respectively. The
whole system will remain stable if this curve does not include the point +1,
which is certainly not the case if | qG | < 1 is true for all frequencies.

Now let us suppose that the amplifier gain and thus qG is at first very
small. If we increase the gain gradually, the curve in Fig. 10.10 is inflated,
keeping its shape. In the course of this process, the distance between the
curve and the point +1, i.e. the quantity | 1 − qG |, could become very small
for certain frequencies. At these frequencies, the absolute value of the trans-
fer function G′ will consequently become very large. Then the signal re-
ceived by the listener will sound ‘coloured’ or, if the system is excited by an
impulsive signal, ringing effects are heard. With a further increase of q,
| qG | will exceed unity somewhere, namely for a frequency close to that of
the absolute maximum of | G(ω) |. Then the system becomes unstable and
performs self-excited oscillation at that frequency.

The effect of feedback on the performance of a public address system can
also be illustrated by plotting | G′(ω) | on a logarithmic scale as a function
of the frequency. This leads to ‘frequency curves’ similar to that shown in
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Fig. 3.7b). Figure 10.11 represents several such curves for various values of
the open loop gain qG, obtained by simulation with a digital computer.2

With increasing gain one particular maximum starts growing more rapidly
than the other maxima and becomes more and more dominating. This is
the condition of audible colouration. When a critical value q0 of the ampli-
fier gain is reached, this leading maximum becomes infinite which means
that the system carries out self-sustained oscillations. (In real systems, the
amplitude of these oscillations remains finite because of inevitable non-
linearities of its components.)

A question of great practical importance concerns the amplifier gain q
which must not be exceeded if colouration is to be avoided or to be kept
within tolerable limits. According to listening tests as well as to theoretical
considerations2 colouration remains imperceptible as long as

20 log(q/q0) r −12 dB (10.12)

For speech transmission, it is sufficient to keep the relative amplification
5 dB below the instability threshold to avoid audible colouration.

Another effect of acoustical feedback is the increase of reverberance which
is again restricted to those frequencies for which G′(ω) is particularly high.
To show this, we simplify eqn (10.11) by putting I = G. Then the second
version of this equation reads
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Figure 10.11 Simulated frequency curves of a sound reinforcement system
operated in a hall at various amplifier gains. The latter range from −20 dB to 0 dB
with respect to the critical gain q0. The total frequency range is 90/T Hz.
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The corresponding impulse response is obtained as the (inverse) Fourier
transform of that expression (see eqn (1.33a)):
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In the latter formula g(n) denotes the n-fold convolution of the impulse
response g(t) with itself, defined by the recursion

g(n+1)(t) =
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and

g(1)(t) = g(t)

For our present purpose it is sufficient to use g(t) = A exp (−δt) as a model
response. It yields g(n)(t) = A(At)n−1 exp (−δt)/(n − 1)!. If this is inserted into
eqn (10.14), the sum turns out to be the series expansion of the exponential
function, hence

g ′(t) = Aq exp [−(δ − Aq)t] (10.15)

Evidently, the decay constant of the exponential is reduced to δ ′ = δ − Aq,
and the reverberation time is increased by a factor
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When q approaches the critical value δ/A, the reverberation time becomes
infinite. On account of our oversimplified assumption of g(t), eqns (10.15)
and (10.16) do not show that the increase of reverberation time is limited
to one or a few discrete frequencies, and that therefore the reverberation
sounds coloured as does a steady state signal of wide bandwidth.

Acoustical feedback can be avoided by selecting a sufficiently small amp-
lifier gain. This, however, makes the loudness of the loudspeaker signal at
the listener’s seat so low that eventually the system will become virtually
useless. The loudspeaker system can be rendered much more effective, how-
ever, by making the mean absolute value of I(ω) in the frequency range of
interest as high as possible, but that of G(ω) as low as possible (see Fig. 10.9).
This in turn is achieved by carefully selecting the directivity of the loud-
speaker with its main lobe pointing towards the listeners, whilst the micro-
phone is located in a direction of weak radiation. Likewise, a microphone
with some directivity should be used, for instance a cardiod microphone,
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which favours the original sound source but not the signal arriving and is
arranged close to it. With these rather simple methods, which are very
effective when applied carefully, acoustical feedback cannot be completely
eliminated, but the point of instability can be shifted far enough away so
that it will never be reached during normal operation.

A further increase of feedback stability would be attainable if the abso-
lute value of the transfer function G(ω) could be replaced by its average,
leading to an all-pass function:

Ga(ω) = G0 exp [iψ(ω)]

Then the curve shown in Fig. 10.10 would be a circle with its radius
depending on the amplifier gain q. The curves in Fig. 10.11 would not be
smooth, to be sure, but they would contain many smaller peaks instead of
one high maximum: a peak would occur for each frequency where the
phase function ψ(ω) is an integer multiple of 2π. Hence the signal colouration
caused by acoustical feedback would be much less severe, and instability
would onset at many frequencies simultaneously and not at just one. Thus
the important question is how the frequency curve can be levelled out.

This cannot be achieved just by using several loudspeakers fed by the
same signal: the resultant transfer function would be the vector sum of
single transfer functions, hence its general properties would be the same as
those of a single room transfer function which itself is the vector sum of
numerous components superimposed with random phases (see Section 3.4).
In particular its squared absolute values are again exponentially distributed
according to eqn (3.34).

In an early attempt to flatten or to average the frequency curve of a room
the microphone was moved on a circular path during its operation.3 Since
each point of the path has its own transmission characteristics, the maxi-
mum and minimum or the phase relation between several components which
make up the resulting sound pressure at the microphone, are averaged out
to some degree provided that the diameter of the circle is substantially
larger than all the wavelengths of interest. The use of a gradient micro-
phone rotating around an axis which is perpendicular to the direction of
maximum sensitivity has also been proposed and this has an effect which is
similar to a moving microphone. These methods have the disadvantage that
they require mechanical movements and they also produce some amplitude
modulation which can be detected subjectively.

A more practical method of virtually flattening the frequency character-
istics of the open loop gain has been proposed and applied in practice by
Schroeder.4,5 As we saw, acoustical feedback is brought about by particular
spectral components which always experience the same ‘favourable’ ampli-
tude and phase conditions when circulating along the closed loop in
Fig. 10.9. If, however, at the beginning of each roundtrip, the frequencies
of all spectral components are shifted by a small amount, then a particular
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component will experience favourable as well as unfavourable phase con-
ditions, which, in effect, is the same as averaging the frequency curve. Let
us suppose a sinusoidal signal has originally the angular frequency ω.
After each roundtrip in the feedback loop its angular frequency has been
increased by ∆ω, whereas its level has been increased or diminished by
L = 20 log10 | qG(ω′) | with ω′ denoting the actual frequency. Hence, after
having performed N roundtrips, the angular frequency of the signal is
ω + N∆ω and its total change in level is

L(ω + ∆ω) + L(ω + 2∆ω) + . . . + L(ω + N∆ω) ≈ N〈L〉

where 〈L〉 is the average of the logarithmic frequency curve from ω to
ω + N∆ω. The system will remain stable if N〈L〉 → −∞ as N approaches
infinity, i.e. if 〈L〉 is negative. In any event, it is no longer the absolute
maximum of the frequency curve which determines the onset of instability,
but a certain average value. Since the difference between the absolute max-
imum and the mean value is about 10–12 dB for most large rooms, as we
saw in Section 3.4, it is this level difference by which the amplifier gain
theoretically may be increased without the danger of instability, compared
with the operation without frequency shifting. Note that ∆ω must be small
enough on the one hand that the frequency shift will not be heard and, on
the other hand, it must be high enough to yield an effective averaging after
a few roundtrips. The latter will be the case if ∆ω corresponds roughly to
the mean spacing of frequency curve maxima, i.e. if according to eqn (3.36b)
the frequency shift is chosen to be
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Both conditions can be fulfilled quite well in the case of speech; with music,
however, even very small frequency shifts are audible, since they change the
musical intervals. Therefore, this method is applicable to speech only. In
practice the total increase in amplification of about 10–12 dB, which is
possible theoretically, cannot be used; if the increase exceeds 5–6 dB, speech
begins to sound unnatural and finally becomes unintelligible, even with
stable conditions. In practice, the frequency shift is achieved by inserting a
suitable electronic device into the amplifier branch.

A similar method of reducing the danger of acoustical feedback was
proposed by Guelke and Broadhurst6 who replaced the frequency shifting
device by a phase modulator. The effect of phase modulation is to add side
lines to each spectral line lying symmetrically with respect to the centre line.
By suitably choosing the width of phase variations, the centre line can be
removed altogether. In this case, the authors were able to obtain an addi-
tional gain of 4 dB. They stated that the modulation is not noticeable even
in music if the modulation frequency is as low as 1 Hz.
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10.5 Reverberation enhancement with external reverberators

As pointed out earlier, many large halls have to serve several quite different
purposes such as meetings, lectures, performance of concerts, theatre and
opera pieces, and sometimes even sports events, banquets and balls. It is
obvious that the acoustical design of such a multipurpose hall cannot create
optimum conditions for each type of presentation. At best some comprom-
ise can be reached which necessarily will not satisfy all expectations.

Great progress could be made if at least the reverberation time of such
a hall could be varied within reasonable limits, thus adapting it to the dif-
ferent requirements for speech and for music. This can be achieved by
movable or rotatable wall or ceiling sections which exhibit either its reflect-
ing or its absorbing side to the arriving sound, or by thick curtains, as
described in Section 9.3. Such devices, however, are costly and subject to
mechanical wear. An alternative solution to this problem is offered by
electroacoustic systems designed for the control of reverberation. These are
expected to be more versatile and perhaps less expensive than mechanical
devices.

A first step in this direction is a carefully designed speech reinforcement
system. If the loudspeaker sounds are projected mainly towards the audi-
ence, i.e. towards absorbent areas, if care is taken to avoid acoustical feed-
back during normal operation, and if the low frequency components which
are not very important to the intelligibility of speech are suppressed rather
than enhanced by the amplifier, then the system will perform satisfactorily
even if the reverberation time of the room is longer than is optimum for
speech. This is because the reverberating sound field is only slightly excited
by the loudspeakers. Hence a fairly good intelligibility can be obtained in a
hall which was originally designed for musical events.

According to Fig. 9.6, the long reverberation time needed for orchestral
music generally requires a high specific volume of a hall, i.e. high volume
per seat, or high volume per square metre of audience. Since, on the other
hand, volume is expensive, clients and designers have a natural tendency to
cut costs by reducing the enclosed volume, and sometimes the acoustical
consultant will find it hard to win through against this tendency. Another
common situation is that of an existing hall which is to be used for orches-
tral performances although it was originally intended for other purposes
and therefore has relatively short reverberation. In any event, a consultant
is sometimes faced with the problem of too short a reverberation time
which is more difficult to handle than the reverse problem.

The ‘natural’ solution, namely to increase the volume of the hall, is al-
most impossible because the costs of this measure are prohibitive. There-
fore, it is not unreasonable to ask whether the same goal could be reached
at less expense by employing electroacoustical aids. In fact, several types
of electroacoustical systems for raising the reverberation time have been
developed and applied.
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Figure 10.12 Principle of electroacoustic reverberation system employing separate
reverberator.

The principle of one of them is depicted in Fig. 10.12. The sounds
produced by the orchestra are picked up by microphones which are as close
as possible to the musicians. The electrical signals are fed into a so-called
‘reverberator’. This is a linear system with an impulse response which is
more or less similar to that of an enclosure and which therefore adds rever-
beration to the signals. After this modification, they are re-radiated in the
original room by loudspeakers. In addition, delaying devices must usually
be inserted into the electrical circuit in order to ensure that the reverberated
loudspeaker signals will not reach any listener’s place earlier than the direct
sound signal from the natural sound source, at the same time taking into
account the various sound paths in the room.

It should be noted that the location of the loudspeakers has a great influ-
ence on the effectiveness of the system and on the quality of the reverber-
ated sound. The obvious supposition that a great number of loudspeakers
are required is not necessarily correct. The reverberating sound field must
indeed be diffuse, not in an objective sense but in a subjective one, i.e. the
listener should have the impression of ‘spaciousness’. According to Section
7.7, this is not a question of numerous directions of sound incidence but a
question of incoherence between the various components. Therefore, the
reverberator should have several output terminals yielding mutually inco-
herent signals which are all derived from the same input signal. In order to
provide each listener with sound incident from several substantially differ-
ent directions, it may be necessary to use far more loudspeakers than inco-
herent signals. Nevertheless, the primary requirement is the use of incoherent
signals, whereas the number of loudspeakers is a secondary question.
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It is quite obvious that all the loudspeakers must be sufficiently distant
from all the listeners in order to prevent one particular loudspeaker being
heard much louder than the others. Finally, care must be taken to prevent
significant acoustical feedback. Even when the amplification is low enough
to exclude self-excitation, feedback can impair the quality of the loud-
speaker sounds, since reiteration of the signal in the feedback loop causes
the exaggeration of certain spectral components and the suppression of
others. This was discussed in Section 10.4. The resulting colouration of the
sound can be intolerable for music at a gain at which it would still be
unnoticeable for speech.

A system of this type was installed for permanent use with music in the
‘Jahrhunderthalle’ of the Farbwerke Hoechst AG at Hoechst near Frank-
furt am Main.7 This hall, the volume of which is 75 000 m3, has a cylindri-
cal side wall with a diameter of 76 m, its roof is a spherical dome. In order
to avoid echoes, the dome as well as the side wall were treated with highly
absorbing materials. In this state it has a natural reverberation time of
about one second. To increase the reverberation time, the sound signals are
picked up by several microphones on the stage, passed through a reverber-
ator and finally fed to a total of 90 loudspeakers which are distributed in
a suspended ceiling and along the cylindrical side and rear wall. With this
system, which underwent several modifications in the course of time, the
reverberation time can be raised to about 2 s.

Adding reverberation to an electrical signal by a ‘reverberator’ can be
effected in various ways. The most natural is to apply the microphone
signal(s) to one or several loudspeakers in a separate reverberation chamber
which has the desired reverberation time including the proper frequency
dependence. The sound signal in the chamber is again picked up by micro-
phones which are far apart from each other to guarantee the incoherence of
the output signals (see Section 8.8). The reverberation chamber should be
free of flutter echoes and may be as small as about 200 m3.

Other reverberators which have found wide application in the past
employed bending waves propagating in metal plates8 or torsional waves
travelling along helical springs, excited and picked up with suitable electro-
acoustic transducers. The reverberation was brought about by repeated
reflections of the waves from the boundary of these waveguides.

The essential thing about these devices is the finite travelling time be-
tween successive reflections. Therefore, in order to produce some kind of
reverberation, we only require, in principle, a delaying device and a suitable
feedback path by which the delayed signal is transferred again and again
from the output to the input of the delay unit (see Fig. 10.13a). If q denotes
the open loop gain in the feedback loop, which must be smaller than unity
for stable conditions, and t0 denotes the delay time, the impulse response of
the circuit is given by eqn (7.4). With each roundtrip, the signal is attenu-
ated by −20 logq dB, and hence after −60/(20 logq) roundtrips, the level has
fallen by 60 dB. The associated total delay is the reverberation time of the
reverberator and is given by
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Figure 10.13 Reverberators employing one delay unit only: (a) comb filter type
reverberator; (b) all-pass type reverberator.
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It can be controlled by varying the open loop gain or the delay time t0.
In order to reach a realistic reverberation time, either q must be fairly

close to unity, which makes the adjustment of the open loop gain very
critical, or t0 must have a relatively large value. In both cases, the reverbera-
tion has an undesirable tonal quality. In the first case the reverberator
produces ‘coloured’ sounds due to the regularly spaced maxima and minima
of its transfer function as shown in Fig 7.10 (central part, right hand side).
In the second case the regular succession of ‘reflections’ is heard as a flutter
echo.

The quality of such a reverberator can be improved to a certain degree,
according to Schroeder and Logan9,10 by giving it all-pass characteristics.
For this purpose, the fraction 1/(1 − q2) is subtracted from its output (see
Fig. 10.13b). The impulse response of the modified reverberator is
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Its Fourier transform, i.e. the transfer function of the reverberator, is given
by
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Figure 10.14 Electrical reverberator consisting of six comb filter units and
two all-pass units. The numbers indicate the delay time of each unit.
Additionally, the unreverberated signal can be added to the output signal
attenuated by a factor g (after Schroeder9).

Since the second factor in eqn (10.20) has the absolute value 1, G(f ) has
all-pass characteristics; there are no longer maxima and minima. Subject-
ively, however, the undesirable properties of the reverberation produced in
this way have not completely disappeared at all, since our ear does not
perform a Fourier analysis in the mathematical sense, but rather a ‘short-
time frequency analysis’, thus also being sensitive to the temporal structure
of a signal. A substantial improvement can be effected, however, by com-
bining several reverberation units with and without all-pass characteristics
and with different delay times. These units are connected partly in parallel,
partly in series. An example is presented in Fig. 10.14. Of course it is
important to avoid simple ratios between the various delay times as well as
long pronounced fundamental repetition periods in the impulse response of
the reverberator. As far as the practical implementation is concerned, time
delays are produced with digital circuits nowadays.

More recently, a sophisticated system has been developed by Berkhout
et al.11,12 which tries to modify the original signals in such a way that they
contain and hence transplant not only the reverberation but the complete
wave field from a fictive hall (of course one with excellent acoustics) into
the actual environment. This system, called Acoustic Control System (ACS),
is based on Huygens’ principle according to which each point hit by a wave
may be considered as the origin of a secondary wave which effects the
propagation to the next points. The ACS is intended to simulate this pro-
cess by hardware components, i.e. by loudspeakers. In the following ex-
planation of ‘wave front synthesis’, we describe all signals in the frequency
domain, i.e. as functions of the angular frequency ω.
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Figure 10.15 Principle of wavefront synthesis.

Let us consider, as shown in Fig. 10.15, an auditorium in which a plane
and regular array of N loudspeakers is installed. If properly fed these loud-
speakers should synthesise the wave fronts originating from the sound
sources. For this purpose, the sounds produced in the stage area are picked
up by M microphones regulary arranged next to the stage (for example, in
the ceiling above the stage). These microphones have some directional char-
acteristics, each of them covering a subarea of the stage with one ‘notional
sound source’ in its centre which is at rm. Accordingly, the signal picked up
by the m th microphone at location r ′m is

M(r ′m, ω) = W(rm, r ′m)S(rm, ω) (10.21)

W is a ‘propagator’ describing the propagation of a spherical wave from rm

to r ′m:

      
W

k
m m

m m

m m

( , )  
exp ( |   |)

|   |
r r

r r

r r
′ =

− − ′
− ′

i
(10.22)

Each of these propagators involves an amplitude change and a delay:

W(rm, r ′m) = A exp (−iωτ) (10.23)

with τ = | rm − r′m |/c.
The microphone signals M(r′m, ω) will be fed to the loudspeakers after pro-

cessing them as if the source signals S(rm, ω) had reached the loudspeaker
locations directly, i.e. as sound waves. Hence we have to undo the effect of
the propagator W(rm, r′m) and to replace it with another one connecting the
mth notional source with the nth loudspeaker. Finally the input signal of
this loudspeaker is obtained by adding the contributions of all sources:
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The loudspeakers will correctly synthesise the original wave fronts if their
mutual distances are small enough and if they have dipole characteristics.
(The latter follows from Kirchhoff’s formula which is the mathematical
expression of Huygens’ principle but will not be discussed here.) For a
practical application it is sufficient to substitute the planar loudspeaker
array by a linear one in horizontal orientation since our ability to localise
sound sources in vertical directions is rather limited.

This relatively simple version of an ACS can be used not only for enhan-
cing the sounds produced on stage but also for improving the balance
between different sources, for instance between singers and an orchestra. It
has the advantage that it preserves the natural localisation of the sound
sources. Although the derivation presented above neglects all reflections
from the boundary of the auditorium, the system works well if the rever-
beration time of the hall is not too long.

Sound reflections from the boundaries could be accounted for by con-
structing the mirror images of the notional sources at rm and including their
contributions into the loudspeaker input signals. At this point, however, it
is much more interesting to construct image sources not with respect to the
actual auditorium but to a virtual hall with desired acoustical conditions,
and hence to transplant these conditions into the actual hall. This process is
illustrated in Fig. 10.16. It shows the actual auditorium (assumed as fan-
shaped) drawn in the system of image sources of a virtual rectangular hall.
Suppose the positions and the relative strengths of the image sources are
numbered in some way,

rm
(1), rm

(2), rm
(3), . . . , and Bm

(1), Bm
(2), Bm

(3), . . .

Then the propagator W(rm, rn) in eqn (10.24) has to be replaced with

W(rm, rn) + Bm
(1)W(rm
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(2)W(rm

(2), rn) + . . .

which leads to the following loudspeaker input signal
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In practical situations it is useful to arrange loudspeaker arrays along the
side walls of the actual auditorium and to assign each of them to the right-
hand and the left-hand image sources, respectively, as indicated in Fig. 10.16.

Since the coefficients Bm
(k) contain in a cumulative way the absorption

coefficients of all walls involved in the formation of a particular image
source (see Section 4.1), the reverberation time and the reverberation level
in it, both in dependence of frequency, are easily controlled by varying
these coefficients. Similarly, the shape and the volume of the virtual hall can
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Figure 10.16 Actual hall and image sources of a rectangular virtual hall
(after Berkhout et al.13).

be changed. Thus, an ACS permits the simulation of a great number of
different acoustical conditions in a given environment, at least in principle.

Since the number of image sources increases rapidly with increasing
order, a vast number of amplitude-delay units as in eqn (10.23) would be
required to synthesise the whole impulse response of the virtual room.
Therefore this treatment is restricted to the first part of the impulse
response. The later parts, i.e. those corresponding to reverberation, can be
synthesized in a more statistical way because the auditive impression con-
veyed by them does not depend on individual reflections. More can be
found on this matter in Ref. 13.

Systems of this kind have been installed in many halls, theatres etc. and
are successfully used for natural sound reinforcement and for reverberation
enhancement. If carefully installed and adjusted even experienced listeners
will not be aware that any electroacoustic system is being operated during
the performance.

10.6 Reverberation enhancement by controlled feedback

So far electroacoustic systems for reverberation enhancement have been
described which are more or less different versions of the scheme in
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Fig. 10.12, i.e. with some reverberation generating device outside the enclos-
ure under consideration. In this last section we shall deal with systems
which employ sound paths inside the room for increasing the reverberation
time.

As discussed in Section 10.3, any acoustical feedback between a loud-
speaker and a microphone is associated with additional reverberation in-
creasing with the open loop gain. Unfortunately, this effect is restricted to
one frequency only. In order to avoid ringing effects and poor tonal quality,
many different channels operated in the same enclosure have to be em-
ployed. Figure 10.17 depicts the multichannel system invented by Franssen.14

It consists of N (>>1) independent transmission channels with each micro-
phone arranged outside the reverberation distance (see eqn (5.38) or (5.40))
of any loudspeaker. Electrically, the kth microphone is connected to the kth
loudspeaker via an amplifier with gain qk. Its output voltage contains the
contribution S0(ω) made by the sound source SS as well as the contributions
of all loudspeakers. Therefore, its amplitude spectrum is given by
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Figure 10.17 Multi-channel system after Franssen.14
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where Gik characterises the acoustic transmission path from the ith loud-
speaker to the kth microphone, including the properties of both transducers.

The expression above represents a system of N linear equations from
which the unknown signal spectra Sk(ω) can be determined, at least in
principle. To get a basic idea of what the solution of this system is like we
can neglect all phase relations and hence replace all complex quantities by
their squared magnitudes averaged over a small frequency range, i.e. Sk by
the real quantity sk and likewise Gik by gik and S0 by s0. This is tantamount
to superimposing energies instead of complex amplitudes and seems to be
justified if the number N of channels is sufficiently high. Furthermore, we
assume equal amplifier gains and also gik ≡ g for all i and k. Then we obtain
immediately from eqn (10.26):
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The ratio s/s0 characterises the increase of the energy density at a particular
microphone caused by the electroacoustic system. On the other hand, un-
der certain assumptions the reverberation time may be taken proportional
to the steady state energy density in a reverberant space (see eqn (5.37)).
Therefore the ratio of reverberation times with and without the system is
with δ = 6.91/T
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This formula is similar to eqn (10.16), but in the present case, one can
afford to keep the open loop gain of each channel low enough to exclude
the risk of sound colouration by feedback, due to the large number N of
channels. Franssen14 recommended making q2g as low as 0.01; then 50
independent channels would be needed to double the reverberation time.

However, more recent investigations by Behler15 and by Ohsmann16 into
the properties of such multi-channel systems have shown that eqn (10.28)
is too optimistic in that the actual gain of reverberation time is lower.
According to the latter author, a system consisting of 100 amplifier chan-
nels will increase the reverberation time by slightly more than 50% if all
channels are operated with gains 3 dB below instability.

For the performance of a multi-channel system of this type it is of crucial
importance that all open loop gains are virtually frequency independent
within a wide frequency range. To a certain degree, this can be achieved by
carefully adjusted equalisers which are inserted into the electrical paths. In
any case there remains the problem that such a system comprises N2 feed-
back channels, but only N amplifiers gains and equalisers to influence them.
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Nevertheless, systems of this kind have been successfully installed and
operated at several places, for instance in the Concert House at Stock-
holm.17 This hall has a volume of 16 000 m3 and seats 2000 listeners. The
electroacoustical system consists of 54 dynamic microphones and 104 loud-
speakers. That means there are microphones which are connected to more
than one loudspeaker. It increases the reverberation time from 2.1 s (with-
out audience) to about 2.9 s. The tonal quality is reportedly so good that
unbiased listeners do not become aware of the fact that an electroacoustical
system is in operation.

An electroacoustical multi-channel system of quite a different kind, but
to be used for the same purpose, has been developed by Parkin and Morgan18

and has become known as ‘assisted resonance system’. But unlike Franssen’s
system, each channel has to handle only a very narrow frequency band.
Since the amplification and the phase shift occurring in each channel can be
adjusted independently (or almost independently), all unpleasant colouration
effects can be avoided. Furthermore, electroacoustical components, i.e. the
microphones and loudspeakers, need not meet high fidelity standards.

The ‘assisted resonance system’ was originally developed for the Royal
Festival Hall in London. This hall, which was designed and constructed
to be used solely as a concert hall, has a volume of 22 000 m3 and a seating
capacity of 3000 persons. It has been felt, since its opening in 1951, that
the reverberation time is not as long as it should have been for optimum
conditions, especially at low frequencies.19 For this reason, an electro-
acoustical system for increasing the reverberation time was installed in 1964;
at first this was on an experimental basis, but in the ensuing years several
aspects of the installation have been improved and it has been made a
permanent fixture.

In the final state of the system, each channel consists of a condenser
microphone, tuned by an acoustical resonator to a certain narrow frequency
band, a phase shifter, a very stable 20 W amplifier, a broad band frequency
filter and a 10- or 12-inch loudspeaker, which is tuned by a quarter wave-
length tube to its particular operating frequency at frequencies lower than
100 Hz. (For higher frequencies, each loudspeaker must be used for two
different frequency bands in order to save space and therefore has to be left
untuned.) The feedback loop is completed by the acoustical path between
the loudspeaker and the microphone. For tuning the microphone, Helmholtz
resonators with a Q factor of 30 are used for frequencies up to 300 Hz; at
higher frequencies they are replaced by quarter wave tubes. The loudspeaker
and the microphone of each channel are positioned in the ceiling in such a
way that they are situated at the antinodes of a particular room mode.

There are 172 channels altogether, covering a frequency range 58–700 Hz.
The spacing of operating frequencies is 2 Hz from 58 Hz to 150 Hz, 3 Hz
for the range 150–180 Hz, 4 Hz up to 300 Hz, and 5 Hz for all higher
frequencies.
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Figure 10.18 Reverberation time of occupied Royal Festival Hall, London, as a
function of frequency both with ( ) and without ( ) ‘assisted
resonance system’.20

In Fig. 10.18 the reverberation time of the occupied hall is plotted as a
function of frequency, again with both system on and system off. These
results were obtained by evaluating recordings of suitable pieces of music
which were taken in the hall. The difference in reverberation time below
700 Hz is quite obvious. Apart from this, the system has the very desirable
effect of increasing the overall loudness of the sounds perceived by the
listeners and of increasing the diffusion, i.e. the number of directions from
which sound reaches the listeners’ ears. In fact, from a subjective point
of view, the acoustics of the hall seems to be greatly improved by the
system and well-known musicians have commented enthusiastically on the
achievements.20

During the past years, assisted resonance systems have been installed
successfully in several other places. These more recent experiences seem to
indicate that the number of independent channels need not be as high as
was chosen for the Royal Festival Hall.21

The foregoing discussions should have made clear that there is a great
potential in sophisticated electroacoustic systems for creating acoustical
environments which can be adapted to nearly any type of performance.
Their widespread and successful application depends, of course, on the
technical perfection of their components and on further technical progresses,
and equally on the skill and experience of the persons who operate them.

In the future, however, the ‘human factor’ will certainly be reduced by
more sophisticated systems, allowing application also in places where no
specially trained personnel are available.
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Index

A-weighted sound pressure level 22
Absorbing wedges 185
Absorption

area 118, 135, 159
coefficient 31–3, 92, 126–8, 261
constant, see Attenuation constant
cross section 159
exponent 129, 130, 140
probability 301
see also Sound absorption

Acoustic
admittance 33
impedance 32
power 14, 316–19
transmission system 18

Acoustic Control System (ACS) 334–7
Acoustical feedback 320, 323–9, 332,

338–41
Adiabatic exponent 7
Admittance 10, 33
Air attenuation 128, 147–50, 299, 301
Air density 7
Air pressure 7
All-pass filter 333
Ambiance 223
Amplitude 10

spectrum 15
Anechoic room 184–7
Angular frequency 9
Apparent

signal-to-noise ratio 253
source width 223–6, 229

Argument 10
Assisted resonance 340–1
Attenuation

in air 128, 147–50, 299, 301
by audience and seats 178–80, 279,

280
constant 11, 99, 148–50, 167

Audience absorption 173–8, 288
Auralisation 299, 306–8
Autocorrelation function 17, 29, 79,

223, 230, 239, 244–8
Average

distance from sound source 279
rate of wall reflections 100, 122–4

Average spacing
of eigenfrequencies 76
of frequency curve maxima 80

Axial mode 68

Background (noise) 319
Backtracing 304
Backward integration 257–9
Balcony 280, 281, 285
Barker sequence 240
Bending 154

stiffness 39, 156
vibrations 55, 156
wave 157, 332

Binary impulse sequence 240
Binaural impulse response 191, 238, 307
Bipolar rating scale 227
Boundary condition 61, 65, 72
Boundary layer 150, 151, 163

Canopy 282
Cardioid microphone 327
Caustic 108, 281
Central limit theorem 77
Central loudspeaker system 319–21
Centre time (‘Schwerpunktszeit’) 210
Characteristic

function 61
impedance 9, 167
vibrations 48

Church 218, 283, 290
Clarity index (‘Klarheitsmaß’) 208
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Diffraction 51–3, 90, 300
from a circular disc 52
from a semi-infinite wall 51

Diffuse
reflection 54, 110–14, 137–41, 295,

296
reflectivity 272–5

Diffuse sound field 46, 100, 103,
116–22, 123, 265

Diffuser
Schroeder- 56, 183
volume- 120

Diffusion, see Diffuse sound field
Digital

delay unit 322
filter 306
room model 306
simulation 300–6

Dirac function 18, 238
Direct sound 97, 196, 278–80, 320
Directional

diffusion 272
distribution 102–5, 194, 223, 269
microphone 269

Directionality, see Directivity
Directivity 27, 237, 327

factor 137, 313, 317–19
function 13, 269, 312–16

Discrete Fourier Transform (DFT)
16

Distribution
of damping constants 84
of energy 78
exponential 78
Gaussian 77

Dodekaeder loudspeaker 236, 237
Double reflection 91, 285
Dummy head 191
Dynamic range 27

Early decay time (EDT) 221, 254–9
Early energy 207–12
Early lateral

energy 224, 254, 283–5
reflections 229, 283

Echo 101, 194, 199–207
coefficient (‘Echograd’) 205
criterion 207

Echogram 97
Edge effect 177, 267
Effective

absorption coefficient 267
seating area 176, 287
transfer function 325

Class room 214, 215, 283
Coherence 90, 97, 223, 331
Colouration 102, 203–4, 251, 252,

325–8
Comb filter 203, 220, 333
Complex

amplitude spectrum 15
notation 10
plane 11
wave number 11

Computer simulation 220, 300–6
Concert hall 215–18, 226–31,

283–6, 291, 300
Conference room 283
Consensus factor 228
Contours of equal

absorption coefficient 35, 50
loudness 21

Controlled feedback 337–41
Convolution 19, 305
Convolver 308
Correlation 244, 270

coefficient 223, 270
factor 223

Counter 301, 302
Coupled rooms 87, 142–5, 290, 291
Critical

distance 317–19, 321
echo level 199–203

Cross talk cancellation (CTC) 191,
227, 306

Cross-correlation function 17, 224,
239, 244–8, 271

Curved surface 105–10, 281, 282,
286, 303

Damping constant 44, 75, 118
Decay 83, 100, 143

curve 138, 144
rate 85
time 86, 213
see also Reverberation

Decibel 20
Deconvolution 239
Definition (‘Deutlichkeit’) 208
Delay 96, 196–204, 321, 322, 332,

333
Delta function 18, 238
Density

of air 7
variations 7

Differential threshold
of reflections 199
of reverberation time 213
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Eigenfrequency 63, 66, 70
average density 70
average spacing 76

Eigenfunction 61, 66
Eigenvalue 61, 66

lattice 69
Electroacoustic

amplification, see Electroacoustic
sound reinforcement

installation or system 303, 310,
316–41

reverberation enhancement, see
Reverberation enhancement

sound reinforcement 310, 316–23
Electronic music 323
Elliptical boundary 108
End correction 154
Energetic impulse response 134,

304–5
Energy density 13, 113, 117

steady state 118, 135, 143, 221,
222

Envelope 248, 249
Envelopment 223, 230
Equivalent absorption area 118
Exponential distribution 78
Eyring’s equation 129, 139, 288

Factor analysis 227
Factory 293
Fan-shaped hall 283
Fast Fourier Transform (FFT) 17
Feedback, see Acoustical feedback
Figure-of-eight microphone, see

Gradient microphone 237
Finite element method (FEM) 61
First wave front 194, 321
Flat room 94, 113, 295–6
Flow resistance 40, 165
Flutter echo 102, 203
Focus, focal point 106, 108, 281
Formant 25
Fourier

coefficients 16
theorem 15

Fourier transform 15
discrete 16
fast 17
inverse 15

Foyer 296
Frequency 10

analysis, see Spectral analysis
angular 9
curve 78, 326

fundamental 16
shift 329

Fricative 24
Fundamental

frequency 16, 24
vibration 26

Gain, see Directivity factor
Gallery 280
Gaussian distribution 77
Gradient microphone 237
Grazing propagation 178, 279
Green’s function 63

Haas effect 201, 321
Hadamard

matrix 242, 243
transform 240, 244

Half-width
of directional characteristics 313,

315
of resonance curve 45, 75

Harmonic
signal 15
vibration 9
wave 9, 12, 15

Harmonics 16, 26
Head transfer function 22, 307
Hearing 21–5
Heat conduction 148, 149, 150
Helmholtz equation 60, 64
Helmholtz resonator 159–63
Hertz 10
Hilbert transform 249, 308
Histogram 301
Horn loudspeaker 313–15

multicellar- 314
Huygens’ principle 334

Image source 91–6, 280, 303–6, 336,
337

visible or valid 93, 95, 303–4
Impedance 10, 31

of air space 41
characteristic- 9, 34
tube 260

Impulse response 19, 96, 134, 237–44,
248–54, 304–6, 316

binaural- 191, 238, 307
energetic 134, 301, 304, 305

In-head localisation 191
Initial time delay gap 230
Intelligibility of speech, see Speech

intelligibility
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Intensity 13
in divergent or convergent ray

bundles 107
Interaural

amplitude difference 22
cross correlation (IACC) 224, 254
phase difference 22

Interference 51, 97
Internal

friction 161
losses 159

Irradiation strength 111, 117, 137

k-space 69
Kilohertz 10

Lambert’s law 110
Large room condition 77
Lecture hall 214, 215, 283
Legendre sequence 57
Level difference 20
Level recorder 256
Listener envelopment 223–6, 230
Localisation 22, 23, 321
Locally reacting wall 38, 46, 49, 157,

260
Logatom 208
Longitudinal wave 8
Loss 11, 159
Loudness 21, 22

level 21
Loudspeaker 303, 311–16

array 315
directivity 311–16, 327
position 319–23
power 316–19

Masking 22, 194, 196
Maximum length sequence 81, 239,

240
Mean free path

between scattering processes 121
between wall reflections 121, 122–6

Megahertz 10
Microphone

directivity 327
moving- 328

Millington-Sette equation 130
Minimum phase system 308
Modulation transfer function 135, 210,

252, 253
Monte-Carlo method 125, 139
Morse’s charts 72
Moving microphone 328

Multichannel system 338–41
Multipurpose hall 292, 330
Musical instruments 25–7

Node, nodal plane 66, 261
Noise 25

level 293–7, 319, 322
source 29

Normal mode 48, 61
axial- 68
tangential- 68

Notional sound source 335
Nyquist diagram 325

Omnidirectional characteristics 237
Open loop gain 324
Open-plan office 293, 297
Open window 45
Opera house 218
Orchestra 27, 285
Organ 26, 184, 288

Paris’ formula 49
Partial vibration 16
Particle

displacement 6
velocity 7

Pearl string absorber 186
Perceptibility

of reflections 196–9
Perceptual

scale 227
space 227

Perforated panel 153, 154, 172
Phantom source 222
Phase

angle 10
constant 167
grating 56
modulation 329
spectrum 15

Phon 21
Phonem 25
Piano 26
Piezoelectric transducer 299
Piston 311–13
Pitch 25
Plane wave 8, 31
Platform 286
Play-back method 246
Point source 11, 12, 14, 20, 62
Polyatomic gas 149
Polyhedral room 141
Porosity 167
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Power 14
Power spectrum 16

of speech 26
Preference scale 227
Pressure

static 7
variations 7

Primitive roots 57
Probe microphone 261
Propagation constant 10
Propagator 335
Pseudostochastic (or pseudorandom)

diffuser 56, 183, 288
sequence 56
signal 240

Psychoacoustic experiments 190, 194
Psychometrics 226
Public address system, see

Electroacoustic sound
reinforcement

Pulsating sphere 12

Quadratic residue diffuser (QRD)
56–7, 183

Quality factor, Q-factor 45, 162

Radiation impedance 160
Random noise 239, 245
Rapid Speech Transmission Index

(RASTI) 253
Ray, see Sound ray
Ray bundle 106–10, 116
Ray tracing 300–3, 304
Rayl 165
Rayleigh model 164, 171
Reciprocity 63, 255
Rectangular room 64–75, 95,

125, 138
Reflection 33–9, 90, 280–6

coefficient 112
density of- 98
detrimental- 208, 209
diagram 97
diffuse- 54, 110–14
double- 91, 285
factor 32, 261, 263
lateral- 223–6, 283–5
rate of- 99, 122–6
response 96, 264, 305
specular- 53, 90
useful- 208, 209, 215

Reflectogram 97, 248–51, 299
Reflector, see Sound reflector

Refraction 90
Relaxation 148, 149
Residual absorption coefficient 177,

288, 318
Resonance 43, 63, 75

absorber 43–5, 155–63, 185
curve 43
frequency 43, 156, 161

Reverberance 220, 326
Reverberant

energy 317
sound field 135, 294

Reverberation 84, 98, 213–21, 254–9
Reverberation chamber 120, 135, 175,

265–8, 274, 332
Reverberation control 292, 330

see also Reverberation enhancement
Reverberation distance 136, 137, 255,

293, 294
Reverberation enhancement 311,

330–41
Reverberation formula 119, 129, 130,

287–8
Reverberation level 336
Reverberation time 76, 80, 86, 101,

119, 128, 213–21, 257, 286–93,
327, 333, 339

of churches 218
of concert halls 215–18
of lecture rooms, drama theatres etc.

214, 215
of opera theatres 218, 219
of resonators 157, 163

Reverberator 194, 331–4
Ripple tank 297

Sabine’s equation 119, 129, 288
Sampling

rate 238, 244
theorem 238

Scale model 297–300, 306
factor 298
optical- 297

Scattering
coefficient 275
cross section 53, 120, 266, 295
diagram 272
see also Sound scattering

Schroeder diffuser 56, 183
Schroeder frequency 76
Seat

absorption 173–8
dip 178

Sensation of space 222
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Short-time spectral analysis 204, 334
Sight line distance 280
Signal-to-noise ratio 253, 256, 264
Smith chart 262
Sone 22
Sound absorption 31, 260–8

by audience 173–8
at normal incidence 33–6
at oblique incidence 36–9
by organ
by panel 43–5, 153
of porous layer 40–2, 180–2
by porous materials 163–73
by pseudostochastic diffuser
at random incidence 46–51
by seats 173–8

Sound decay, see Decay
Sound field

diffuse 46, 100, 103, 116–22, 123
reverberant 135
synthetic 190, 223

Sound insulation 29
Sound intensity 13
Sound particle 116
Sound power 14

of human voice 27
of musical instruments 27
of orchestra 27

Sound power level 20
Sound pressure 7

amplitude 10
level 20, 221–2

Sound radiation 12–14, 311–15
Sound ray 89
Sound reflection, see Reflection
Sound reflector 53, 281, 282
Sound reinforcement, see

Electroacoustic sound
reinforcement

Sound scattering 31, 53–8, 120,
294

Sound shadow 51, 53, 122
Sound source 12–14
Sound velocity 6, 8
Source density 61
Space curve 78
Spaciousness 222–6, 283–5, 331
Spark gap 237, 299
Spatial impression 222–6, 229,

283–5, 306
Specific

acoustic admittance 33
acoustic impedance 33

Spectral analysis 17
short time- 204, 334

Spectral function 15
Spectrum 15

short time- 307
Speech

intelligibility 25, 208, 210, 212, 253,
317–19

signal 25
Transmission Index (STI) 211, 253

Spherical wave 11, 31
Stage 285, 286
Standing wave 35, 36, 38, 40, 48, 61,

74
tube 260

Static pressure 7
Strength factor 221, 222, 226
Structure factor 171
Superposition of waves 97
Syllable intelligibility 208

Tangential mode 68, 69
Temperature 6
Temperature variations 7, 148, 150
Theatre 214
Thermal relaxation 148, 149
Threshold

of colouration 203–4
of hearing 21
of perceptibility of reflections 196–9

Timbre 25, 199, 203
Total subjective preference 230, 231
Transfer function 19, 63, 75, 81, 324
Transmission

factor 181
function, see Transfer function
system 18

Transparency 208, 209
Transparent screen 286

Variable acoustics 292
Variance of path length distribution

126, 131, 133
Vibration

harmonic 9
Virtual room 336, 337
Virtual sound source, see Image source
Viscosity 148, 150, 151, 164–5
Vitruv’s sound vessel 159
Voice 25–8
Volume diffuser (or scatterer) 120,

266
Volume velocity 12
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Wall
absorption, see Absorption

coefficient
admittance 33
impedance 31, 32, 262

Warmth 217, 231
Waterhouse effect 268
Wave

harmonic 9, 12
longitudinal 8

plane 8, 31
spherical 11, 31

Wave equation 8
Wave front synthesis 334
Wave normal 8
Wave number 10
Wave types 261
Wavefront 8, 68
Wavelength 9
Whispering gallery 109
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